如圖,每個(gè)小方格都是邊長為1的正方形,點(diǎn)、是方格紙的兩個(gè)格點(diǎn)(即正方形的頂點(diǎn)),在這個(gè)的方格紙中,找出格點(diǎn),使是等腰三角形,這樣的點(diǎn)共有     個(gè).8
8

試題分析:根據(jù)等腰三角形的性質(zhì)和勾股定理分別求出以AB為腰的等腰三角形的個(gè)數(shù)和以AB為底邊的等腰三角形的個(gè)數(shù)即可得出答案.

如上圖,以AB為腰的等腰三角形共4個(gè),以AB為底邊的等腰三角形共有4個(gè)
故這樣的點(diǎn)共有8個(gè).
點(diǎn)評(píng):解答此類問題的關(guān)鍵是讀懂題意及圖形特征,根據(jù)等腰三角形的性質(zhì)正確找出符合條件的所有的點(diǎn),要做到不重不漏.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀理解
如圖1,△ABC中,沿∠BAC的平分線AB1折疊,剪掉重疊部分;將余下部分沿∠B1A1C的平分線A1B2折疊,剪掉重疊部分;將余下部分沿∠BnAnC的平分線AnBn+1折疊,點(diǎn)Bn與點(diǎn)C重合.無論折疊多少次,只要最后一次恰好重合,我們就稱∠BAC是△ABC的好角.

小麗展示了確定∠BAC是△ABC的好角的兩種情形.
情形一:如圖2,沿等腰三角形ABC頂角∠BAC的平分線AB1折疊,點(diǎn)B與點(diǎn)C重合;

情形二:如圖3,沿 △ABC的∠BAC的平分線AB1折疊,剪掉重疊部分;
將余下的部分沿∠B1A1C的平分線 A1B2折疊,此時(shí)點(diǎn)B1與點(diǎn)C重合.
 
探究發(fā)現(xiàn)
(1)△ABC中,∠B=2∠C,經(jīng)過兩次折疊,∠BAC  (填“是”或“不是”)△ABC的好角;
(2)若經(jīng)過三次折疊發(fā)現(xiàn)∠BAC是△ABC的好角,請(qǐng)?zhí)骄俊螧與∠C之間的等量關(guān)系(不妨設(shè)∠B>∠C).
根據(jù)以上內(nèi)容猜想:若經(jīng)過n次折疊∠BAC是△ABC的好角,則∠B與∠C之問的等量關(guān)系為      .(不妨設(shè)∠B>∠C)
應(yīng)用提升:
(3)小麗找到一個(gè)三角形,三個(gè)角分別為15º,60º,l05º,發(fā)現(xiàn)60º和l05º的兩個(gè)角都是此三角形的好角.
請(qǐng)你完成,如果一個(gè)三角形的最小角是4º,試求出三角形另外兩個(gè)角的度數(shù),使該三角形的三個(gè)角均是此三角形的好角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

命題“中至多有一個(gè)直角或鈍角”的反設(shè)是                 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知有一張三角形紙片ABC的一邊AB=10,若D為AB邊上的點(diǎn),過點(diǎn)D作DE//BC交AC于點(diǎn)E,分別過點(diǎn)D、E作DF⊥BC,EG⊥BC,垂足分別為點(diǎn)F、點(diǎn)G,把三角形紙片ABC分別沿DE、DF、EG按圖1方式折疊,點(diǎn)A、B、C分別落在A´、B´、C´處.若A´、B´、C´在矩形DFGE內(nèi)或者其邊上,且互不重合,此時(shí)我們稱△A´B´C´(即圖中陰影部分)為“重疊三角形”.

(1)實(shí)驗(yàn)操作:當(dāng)AD=4時(shí),①若∠A=90°,AB=AC,請(qǐng)?jiān)趫D2中畫出“重疊三角形”,= ; 
②若AB=AC,BC=12,如圖3,= ;③若∠B=30°,∠C=45°,如圖4,= ;                     
(2)實(shí)驗(yàn)探究:若△ABC為等邊三角形(如圖5),設(shè)AD的長為m,若重疊三角形A´B´C´存在,試用含m的代數(shù)式表示重疊三角形A´B´C´的面積,并寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,M是BC邊的中點(diǎn),AP是∠BAC的平分線,BP⊥AP于點(diǎn)P. 若AB=12,AC=22,則MP的長為( )
A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AD是高,矩形PQMN的頂點(diǎn)P、N分別在AB、AC上,QM在邊BC上,若BC=80,AD=60,PN=2PQ,求矩形PQMN的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,某海濱浴場(chǎng)東西走向的海岸線可近似看作直線. 救生員甲在A處的瞭望臺(tái)上觀察海面情況,發(fā)現(xiàn)其正北方向的B處有人發(fā)出求救信號(hào). 他立即沿AB方向徑直前往救援,同時(shí)通知正在海岸線上巡邏的救生員乙. 乙馬上從C處入海,徑直向B處游去.甲在乙入海10秒后趕到海岸線上的D處,再向B處游去.若CD=40米,B在C的北偏東方向,甲、乙的游泳速度均是2米/秒.問誰先到達(dá)B處?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖在平行四邊形ABCD中,延長AB到點(diǎn)E,使BE=AB,連接DE交BC于點(diǎn)F。
求證:△BEF≌△CDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖, 在中, 邊上的一點(diǎn), 的中點(diǎn), 過點(diǎn)作的平行線交的延長線于點(diǎn), 且, 連接.

(1) 求證: 的中點(diǎn);
(2) 若, 試判斷四邊形的形狀, 并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案