【題目】1)如圖,ABC, ABC、∠ACB 的三等分線交于點(diǎn) E、D 若∠1=130°,∠2=110°,求∠A 的度數(shù)。

2)如圖,ABC,ABC 的三等分線分別與∠ACB 的平分線交于點(diǎn) D,E 若∠1=110°,∠2=130°,求∠A 的度數(shù)。

【答案】1)∠A=60°,(2)∠A=60°

【解析】

(1)由三角形內(nèi)角和及三等角平分線的定義可得到方程組,則可求得∠ABC+ACB,再利用三角形內(nèi)角和可求得∠A

2)由三角形外角可得∠DBC=20°由三等角平分線的定義可得∠ABC=60°,三角形內(nèi)角和可得∠ECB=30°,角平分線的定義可得∠ACB=60°,由三角形內(nèi)角和可得∠A=60°。

解:(1

∵∠ABC、∠ACB 的三等分線交于點(diǎn) ED

, ∠ABC=3x,∠ACB=3y

①+②得:240°+3x+3y=360°

即3x+3y=120°

∴∠ABC+∠ACB=120°

∴∠A=180°-(∠ABC+∠ACB)=180°-120°=60°

(2)∵∠ABC 的三等分線分別與∠ACB 的平分線交于點(diǎn) D,E

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人進(jìn)行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分,如圖,甲在O點(diǎn)正上方1m的P處發(fā)出一球,羽毛球飛行的高度y(m)與水平距離x(m)之間滿足函數(shù)表達(dá)式y(tǒng)=a(x﹣4)2+h,已知點(diǎn)O與球網(wǎng)的水平距離為5m,球網(wǎng)的高度為1.55m.

(1)當(dāng)a=﹣時(shí),①求h的值;②通過(guò)計(jì)算判斷此球能否過(guò)網(wǎng).

(2)若甲發(fā)球過(guò)網(wǎng)后,羽毛球飛行到與點(diǎn)O的水平距離為7m,離地面的高度為m的Q處時(shí),乙扣球成功,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中有一個(gè)四邊形ABCD.

(1)分別寫出點(diǎn)A,B,C,D的坐標(biāo);

(2)求四邊形ABCD的面積;

(3)將四邊形ABCD先向下平移3個(gè)單位長(zhǎng)度,再向右平移4個(gè)單位長(zhǎng)度后得到的四邊形A1B1C1D1,畫出四邊形A1B1C1D1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(4分)如圖,直線l外不重合的兩點(diǎn)A、B,在直線l上求作一點(diǎn)C,使得AC+BC的長(zhǎng)度最短,作法為:作點(diǎn)B關(guān)于直線l的對(duì)稱點(diǎn)B′;連接AB′與直線l相交于點(diǎn)C,則點(diǎn)C為所求作的點(diǎn)在解決這個(gè)問(wèn)題時(shí)沒(méi)有運(yùn)用到的知識(shí)或方法是(

A轉(zhuǎn)化思想

B三角形的兩邊之和大于第三邊

C兩點(diǎn)之間,線段最短

D三角形的一個(gè)外角大于與它不相鄰的任意一個(gè)內(nèi)角

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知點(diǎn)A-2,0).點(diǎn)Dy軸上,連接AD并將它沿x軸向右平移至BC的位置,且點(diǎn)B坐標(biāo)為(4,0),連接CDOD=AB

1)線段CD的長(zhǎng)為 ,點(diǎn)C的坐標(biāo)為 ;

2)如圖2,若點(diǎn)M從點(diǎn)B出發(fā),以1個(gè)單位長(zhǎng)度/秒的速度沿著x軸向左運(yùn)動(dòng),同時(shí)點(diǎn)N從原點(diǎn)O出發(fā),以相同的速度沿折線OD→DC運(yùn)動(dòng)(當(dāng)N到達(dá)點(diǎn)C時(shí),兩點(diǎn)均停止運(yùn)動(dòng)).假設(shè)運(yùn)動(dòng)時(shí)間為t秒.

t為何值時(shí),MNy軸;

②求t為何值時(shí),SBCM=2SADN

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】出租車司機(jī)小王某天下午營(yíng)運(yùn)全是在南北走向的公路上進(jìn)行的。如果向南記作,向北記作他這天下午行車情況如下:(單位:千米;每次行車都有乘客)

, , ,

請(qǐng)回答:

)小王將最后一名乘客送到目的地時(shí),小王在下午出車的出發(fā)地的什么方向?距下午出車的出發(fā)地多遠(yuǎn)?

)若小王的出租車每千米耗油升,不計(jì)汽車的損耗,共耗油多少升?

)若規(guī)定每敞車的起步價(jià)是無(wú),且每趟車3千米以內(nèi)(含3千米)只收起步價(jià);若超過(guò)3千米,除收起步價(jià)外,超過(guò)的每千米還需收元錢,那么小王這天下午收到乘客所給車費(fèi)共多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列分式方程解應(yīng)用題

元旦期間,甲、乙兩位好友約著一起開(kāi)兩輛車自駕去黃山玩,其中面包車為領(lǐng)隊(duì),小轎車緊隨其后,他們同時(shí)出發(fā),當(dāng)面包車行駛了200千米時(shí),發(fā)現(xiàn)小轎車只行駛了180千米,若面包車的行駛速度比小轎車快10千米/小時(shí),請(qǐng)問(wèn):

1)小轎車和面包車的速度分別多少?

2)當(dāng)小轎車發(fā)現(xiàn)落后時(shí),為了追上面包車,他就馬上提速,面包車速度不變,他們約定好在面包車前面100千米的地方碰頭,他們正好同時(shí)到達(dá),請(qǐng)問(wèn)小轎車需要提速多少千米/小時(shí)?

3)小轎車發(fā)現(xiàn)落后時(shí),為了追上面包車,他就馬上提速,面包車速度不變,他們約定好在面包車前面s千米的地方碰頭,他們正好同時(shí)到達(dá),請(qǐng)問(wèn)小轎車提速 千米/小時(shí).(請(qǐng)你直接寫出答案即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),長(zhǎng)方形OACB的頂點(diǎn)A、B分別在x軸與y軸上,已知OA=6,OB=10.點(diǎn)Dy軸上一點(diǎn),其坐標(biāo)為(0,2),點(diǎn)P從點(diǎn)A出發(fā)以每秒2個(gè)單位的速度沿線段AC﹣CB的方向運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)B重合時(shí)停止運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.

(1)當(dāng)點(diǎn)P經(jīng)過(guò)點(diǎn)C時(shí),求直線DP的函數(shù)解析式;

(2)①求△OPD的面積S關(guān)于t的函數(shù)解析式;

②如圖②,把長(zhǎng)方形沿著OP折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)B′恰好落在AC邊上,求點(diǎn)P的坐標(biāo).

(3)點(diǎn)P在運(yùn)動(dòng)過(guò)程中是否存在使△BDP為等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】前年,某大型工業(yè)企業(yè)落戶萬(wàn)州,相關(guān)建設(shè)隨即展開(kāi).到去年年底,工程進(jìn)入到設(shè)備安裝階段.在該企業(yè)的采購(gòu)計(jì)劃中,有AB、C三種生產(chǎn)設(shè)備.若購(gòu)進(jìn)3A,7B,1套丙,需資金63萬(wàn)元;若購(gòu)進(jìn)4A10B,1套丙,需資金84萬(wàn)元.現(xiàn)在打算同時(shí)購(gòu)進(jìn)A、B、C10套,共需資金___________________萬(wàn)元.

查看答案和解析>>

同步練習(xí)冊(cè)答案