【題目】已知,點(diǎn)P是等邊三角形△ABC中一點(diǎn),線段AP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°到AQ,連接PQ、QC.
(1)求證:△BAP≌△CAQ.
(2)若PA=3,PB=4,∠APB=150°,求PC的長(zhǎng)度.
【答案】(1)見解析;(2)5
【解析】
(1)直接利用旋轉(zhuǎn)的性質(zhì)結(jié)合全等三角形的判定與性質(zhì)得出答案;
(2)直接利用等邊三角形的性質(zhì)結(jié)合勾股定理即可得出答案.
(1)證明:∵線段AP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°到AQ,
∴AP=AQ,∠PAQ=60°,
∴△APQ是等邊三角形,∠PAC+∠CAQ=60°,
∵△ABC是等邊三角形,
∴∠BAP+∠PAC=60°,AB=AC,
∴∠BAP=∠CAQ,
在△BAP和△CAQ中,
,
∴△BAP≌△CAQ(SAS);
(2)∵由(1)得△APQ是等邊三角形,
∴AP=PQ=3,∠AQP=60°,
∵∠APB=150°,
∴∠PQC=150°﹣60°=90°,
∵PB=QC,
∴QC=4,
∴△PQC是直角三角形,
∴PC===5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的外接圓⊙O的直徑,點(diǎn)P在BC延長(zhǎng)線上,PA是⊙O的切線,且∠B=35°.
(1)求∠PAC的度數(shù).
(2)弦CE⊥AD交AB于點(diǎn)F,若AFAB=12,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)得到的,連接BE、CF相交于點(diǎn)D.
(1)求證:BE=CF;
(2)當(dāng)四邊形ACDE為菱形時(shí),求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△OAB三個(gè)頂點(diǎn)的坐標(biāo)分別為O(0,0),A(3,0),B(2,3).
(1)tan∠OAB= ;
(2)在第一象限內(nèi)畫出△OA'B',使△OA'B'與△OAB關(guān)于點(diǎn)O位似,相似比為2:1;
(3)在(2)的條件下,S△OAB:S四邊形AA′B′B= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰直角三角形中,點(diǎn)、點(diǎn)分別在軸、軸上,且. 將繞點(diǎn)順時(shí)針旋轉(zhuǎn)使斜邊落在軸上,得到第一個(gè);將繞點(diǎn)順時(shí)針旋轉(zhuǎn)使邊落在軸上,得到第二個(gè);將繞點(diǎn)順時(shí)針旋轉(zhuǎn)使邊落在軸上,得到第三個(gè);……順次這樣做下去,得到的第2019個(gè)三角形落在軸上的邊的右側(cè)頂點(diǎn)所走的路程為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AN是⊙O的直徑,四邊形ABMN是矩形,與圓相交于點(diǎn)E,AB=15,D是⊙O上的點(diǎn),DC⊥BM,與BM交于點(diǎn)C,⊙O的半徑為R=30.
(1)求BE的長(zhǎng).
(2)若BC=15,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 的對(duì)角線交于點(diǎn)平分交于點(diǎn),交于點(diǎn),且,連接.下列結(jié)論:①;②;③:④其中正確的結(jié)論有__________(填寫所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)盒中有4個(gè)完全相同的小球,把它們分別標(biāo)號(hào)為1,2,3,4,隨機(jī)摸取一個(gè)小球然后放回,再隨機(jī)摸出一個(gè)小球.
(Ⅰ)請(qǐng)用列表法(或畫樹狀圖法)列出所有可能的結(jié)果;
(Ⅱ)求兩次取出的小球標(biāo)號(hào)相同的概率;
(Ⅲ)求兩次取出的小球標(biāo)號(hào)的和大于6的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)E,F,G,H分別在邊AB,BC,CD,DA上,AE=CG,AH=CF,且EG平分∠HEF.
(1)求證:△AEH≌△CGF.
(2)若∠EFG=90°.求證:四邊形EFGH是正方形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com