【題目】如圖,AB是半圓O的直徑,CD是半圓O上的兩點,且OD∥BC,ODAC交于點E

1)若∠B=70°,求∠CAD的度數(shù);

2)若AB=4,AC=3,求DE的長.

【答案】135°;(2

【解析】試題分析:根據(jù)OD∥BC,∠DOA=∠B=70°,根據(jù)OA=OD可得∠DAO=∠ADO=55°,根據(jù)AB為直徑可求出∠CAD的度數(shù);根據(jù)Rt△ACB得出BC的長度,根據(jù)OAB的中點,OD∥BC,從而得出OEOD的長度,根據(jù)DE=ODOE得出答案.

試題解析:(1∵OD∥BC∴∠DOA=∠B=70°. 又∵OA=OD,∴∠DAO=∠ADO=55°

∵AB是直徑,∴∠ACB=90°,∴∠CAB=20° ∴∠CAD=35°

2)在Rt△ACB中,BC=圓心O是直徑AB的中點,OD∥BC,

∴OE=BC=OD=AB=2, ∴DE=OD-OE=2-

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,“和諧號”高鐵列車的小桌板收起時近似看作與地面垂直,小桌板的支架底端與桌面頂端的距離OA = 75厘米.展開小桌板使桌面保持水平,此時CB⊥AO,∠AOB =∠ACB = 37°,且支架長OB與桌面寬BC的長度之和等于OA的長度.求小桌板桌面的寬度BC.(參考數(shù)據(jù)sin37° ≈ 0.6,cos37°≈ 0.8,tan37° ≈ 0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)yk1xb的圖象與x軸交于點A(-3,0),與y軸交于點B,且與正比例函數(shù)ykx的圖象交點為C3,4).

1)求正比例函數(shù)與一次函數(shù)的關(guān)系式;

2)若點D在第二象限,DAB是以AB為直角邊的等腰直角三角形,請求出點D的坐標;

3)在x軸上是否存在一點E使BCE周長最小,若存在,求出點E的坐標

4)在x軸上求一點P使POC為等腰三角形,請直接寫出所有符合條件的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級(1)班學(xué)生在完成課題學(xué)習(xí)體質(zhì)健康測試中的數(shù)據(jù)分析后,利用課外活動時間積極參加體育鍛煉,每位同學(xué)從籃球、跳繩、立定跳遠、長跑、鉛球中選一項進行訓(xùn)練,訓(xùn)練后都進行了測試.現(xiàn)將項目選擇情況及訓(xùn)練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖.

請你根據(jù)上面提供的信息回答下列問題:

1)扇形圖中跳繩部分的扇形圓心角為 度,該班共有學(xué)生 人,訓(xùn)練后籃球定時定點投籃平均每個人的進球數(shù)是

2)老師決定從選擇鉛球訓(xùn)練的3名男生和1名女生中任選兩名學(xué)生先進行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠C=90°,AC=3,BC=4,D是AB上一動點(不與A、B重合),DE⊥AC于點E,DF⊥BC于點F,點D由A向B移動時,矩形DECF的周長變化情況是( )

A. 逐漸減小 B. 逐漸增大 C. 先增大后減小 D. 先減小后增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中具有穩(wěn)定性的是( 。
A.正三角形
B.正方形
C.正五邊形
D.正六邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,ACB90°,ACBCABC的高CD與角平分線AE相交點F,過點CCHAEGABH

1)求BCH的度數(shù);

2)求證CEBH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ABC與∠ACB的平分線相交于點O.過點O作EF∥BC.分別交AB和AC于點E、F.

(l)你能發(fā)現(xiàn)哪些結(jié)論,把它們寫出來.并選擇一個加以證明;

(2)若AB=10,AC=8.試求△AFF的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三角形的兩邊a=3,b=7,則下列長度的四條線段中能作為第三邊c的是( 。
A.3
B.4
C.7
D.10

查看答案和解析>>

同步練習(xí)冊答案