【題目】如圖,過點(diǎn)作軸的垂線交直線于點(diǎn),過點(diǎn)作直線的垂線,交軸于點(diǎn),過點(diǎn)作軸的垂線交直線于點(diǎn)…,這樣依次下去,得到,…,其面積分別記為,…,則為__________.
【答案】
【解析】
先根據(jù)題意得出OA1和OA2的長,再根據(jù)題意得出OAn=2n,把縱坐標(biāo)代入解析式求得橫坐標(biāo),然后根據(jù)三角形相似的性質(zhì)即可求得S100.
∵點(diǎn)A0的坐標(biāo)是(0,1),
∴OA0=1,
∵點(diǎn)A1在直線上,
∴OA1=2,A0A1=,
∴OA2=4,
∴OA3=8,
∴OA4=16,
∴可得出OAn=2n,
∴AnAn+1=2n·,
∴OA198=2198,A198A199=2198·,
∵S1=(4-1) ·=,
∵A2A1∥A200A199,
∴△A0A1A2∽△A198A199A200,
∴,
∴S100=2396·=,
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC為等邊三角形,點(diǎn)O為AB邊上一點(diǎn),且BO=2AO=4,將△ABC繞點(diǎn)O逆時針旋轉(zhuǎn)60°得△DEF,則圖中陰影部分的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD中,AB=3,BC=4,點(diǎn)E是BC邊上任一點(diǎn),連接AE,把∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處,當(dāng)CE的長為_____時,△CEB′恰好為直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便捷.某校?shù)學(xué)興趣小組設(shè)計(jì)了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)并繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合圖中所給的信息解答下列問題:
(1)這次活動共調(diào)查了 人;在扇形統(tǒng)計(jì)圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.觀察此圖,支付方式的“眾數(shù)”是“ ”;
(3)在一次購物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進(jìn)行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,與三角形各邊都相切的圓叫做三角形的內(nèi)切圓,則三角形可以稱為圓的外切三角形.如圖1,與的三邊分別相切于點(diǎn)則叫做的外切三角形.以此類推,各邊都和圓相切的四邊形稱為圓外切四邊形.如圖2,與四邊形ABCD的邊分別相切于點(diǎn)則四邊形叫做的外切四邊形.
(1)如圖2,試探究圓外切四邊形的兩組對邊與之間的數(shù)量關(guān)系,猜想: (橫線上填“>”,“<”或“=”);
(2)利用圖2證明你的猜想(寫出已知,求證,證明過程);
(3)用文字?jǐn)⑹錾厦孀C明的結(jié)論: ;
(4)若圓外切四邊形的周長為相鄰的三條邊的比為,求此四邊形各邊的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為⊙的直徑,點(diǎn)在的延長線上,點(diǎn)在⊙上,且.
(1)求證:是⊙的切線;
(2)已知,,點(diǎn)是的中點(diǎn),,垂足為,交于點(diǎn),求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD//BC,∠A=90°,CD=CB,過點(diǎn)C作∠DCB的平分線CE交AB于點(diǎn)E,連接DE,過點(diǎn)D作DF//AB,且交CE于F點(diǎn),連接BF.
(1)求證:四邊形DEBF是菱形;
(2)若AB=5,BC=13,求tan∠AED的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點(diǎn)之間的距離表示為AB,在數(shù)軸上A、B兩點(diǎn)之間的距離AB=|a﹣b|.回答下列問題:
(1)數(shù)軸上表示﹣3和1兩點(diǎn)之間的距離是 ,數(shù)軸上表示﹣2和3的兩點(diǎn)之間的距離是 ;
(2)數(shù)軸上表示x和﹣1的兩點(diǎn)之間的距離表示為 ;
(3)若x表示一個有理數(shù),則|x﹣2|+|x+3|有最小值嗎?若有,請求出最小值;若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,分別以ACBC為底邊,向△ABC外部作等腰△ADC和△CEB,點(diǎn)M為AB中點(diǎn),連接MDME分別與ACBC交于點(diǎn)F和點(diǎn)G.
求證四邊形MFCG是矩形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com