【題目】如圖,在△ABC中,ABAC,BDBC,等邊△BEF的頂點FBC上,邊EFAD于點P,若BE10,BC14,則PE的長為(  )

A.1B.2C.3D.4

【答案】D

【解析】

根據(jù)等腰三角形的性質(zhì),由ABACBDBC,得到ADBC,再根據(jù)等邊三角形的性質(zhì)得∠BFE60°,BFBEEF10,則可計算出DFBFBD1073,然后在RtPDF中,利用含30度的直角三角形的三邊關系得到PF2DF6,所以PEEFPF1064

ABAC,BDBC7,

ADBC,

∵△BEF為等邊三角形,

∴∠BFE60°,BFBEEF10,

DFBFBD1073,

RtPDF中,∵∠PFD60°,

∴∠DPF30°,

PF2DF6,

PEEFPF1064

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)y=x+4的圖象與二次函數(shù)y=ax(x﹣2)的圖象相交于A(﹣1,b)和B,點P是線段AB上的動點(不與A、B重合),過點P作PCx軸,與二次函數(shù)y=ax(x﹣2)的圖象交于點C.

(1)求a、b的值

(2)求線段PC長的最大值;

(3)若PAC為直角三角形,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系 xOy中,直線ykxb x軸相交于點A,與反比例函數(shù)在第一象限內(nèi)的圖像相交于點 A(1,8)、B(m2)

(1)求該反比例函數(shù)和直線y kxb的表達式;

(2)求證:ΔOBC為直角三角形;

(3)設∠ACOα,點Q為反比例函數(shù)在第一象限內(nèi)的圖像上一動點,且滿足90°α<∠QOCα,求點Q的橫坐標q的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:

1;(2;(3;(4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018長春國際馬拉松賽于2018527日在長春市舉行,其中10公里跑起點是長春體育中心,終點是衛(wèi)星廣場.比賽當天賽道上距離起點5km處設置一個飲料站,距離起點7.5km處設置一個食品補給站.小明報名參加了10公里跑項目.為了更好的完成比賽,小明在比賽前進行了一次模擬跑,從起點出發(fā),沿賽道跑向終點,小明勻速跑完前半程后,將速度提高了,繼續(xù)勻速跑完后半程.小明與終點之間的路程與時間之間的函數(shù)圖象如圖所示,根據(jù)圖中信息,完成以下問題.(1公里=1千米)

1)小明從起點勻速跑到飲料站的速度為_______,小明跑完全程所用時間為________;

2)求小明從飲料站跑到終點的過程中之間的函數(shù)關系式;

3)求小明從起點跑到食品補給站所用時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=﹣x2+bx+cc0)的圖象與x軸交于AB兩點(點A在點B的左側),與y軸交于點C,且OB=OC=3,頂點為M

1)求二次函數(shù)的解析式;

2)點P為線段BM上的一個動點,過點Px軸的垂線PQ,垂足為Q,若OQ=m,四邊形ACPQ的面積為S,求S關于m的函數(shù)解析式,并寫出m的取值范圍;

3)探索:線段BM上是否存在點N,使NMC為等腰三角形?如果存在,求出點N的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在ABCD中,ECD延長線上的一點,BEAD交于點F,DECD.

(1)求證:△ABF∽△CEB

(2)若△DEF的面積為2,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀與計算:請閱讀以下材料,并完成相應的任務.

斐波那契(約11701250)是意大利數(shù)學家,他研究了一列數(shù),這列數(shù)非常奇妙,被稱為斐波那契數(shù)列(按照一定順序排列著的一列數(shù)稱為數(shù)列).后來人們在研究它的過程中,發(fā)現(xiàn)了許多意想不到的結果,在實際生活中,很多花朵(如梅花、飛燕草、萬壽菊等)的瓣數(shù)恰是斐波那契數(shù)列中的數(shù).斐波那契數(shù)列還有很多有趣的性質(zhì),在實際生活中也有廣泛的應用.斐波那契數(shù)列中的第n個數(shù)可以用表示(其中,n≥1).這是用無理數(shù)表示有理數(shù)的一個范例.

任務:請根據(jù)以上材料,通過計算求出斐波那契數(shù)列中的第1個數(shù)和第2個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形 ABCD 中,AD∥BC,∠ABC=90°,AB=7,AD=3, BC=4.點 P AB 邊上一動點,若△PAD △PBC 是相似三角形,則滿足條件的點 P 的個數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案