【題目】如圖,在矩形ABCD中,AB=6,BC=8,E是BC邊上一點,將矩形沿AE折疊,點B落在點B'處,當△B'EC是直角三角形時,BE的長為( 。
A.2B.6C.3或6D.2或3或6
【答案】C
【解析】
分以下兩種情況求解:①當點B′落在矩形內(nèi)部時,連接AC,先利用勾股定理計算出AC=10,根據(jù)折疊的性質(zhì)得∠AB′E=∠B=90°,而當△B′EC為直角三角形時,只能得到∠EB′C=90°,所以點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,則EB=EB′,AB=AB′=6,可計算出CB′=4,設(shè)BE=x,則EB′=x,CE=8﹣x,然后在Rt△CEB′中運用勾股定理可計算出x.
②當點B′落在AD邊上時.此時四邊形ABEB′為正方形,求出BE的長即可.
解:當△B′EC為直角三角形時,有兩種情況:
①當點B′落在矩形內(nèi)部時,如圖1所示.連結(jié)AC,
在Rt△ABC中,AB=6,BC=8,
∴AC==10,
∵∠B沿AE折疊,使點B落在點B′處,
∴∠AB′E=∠B=90°,
當△B′EC為直角三角形時,得到∠EB′C=90°,
∴點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,如圖,
∴EB=EB′,AB=AB′=6,
∴CB′=10﹣6=4,
設(shè)BE=x,則EB′=x,CE=8﹣x,
在Rt△B′EC中,
∵EB′2+CB′2=CE2,
∴x2+42=(8﹣x)2,
解得x=3,
∴BE=3;
②當點B′落在AD邊上時,如圖2所示.
此時ABEB′為正方形,
∴BE=AB=6.
綜上所述,BE的長為3或6.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,各內(nèi)角的平分線分別相交于點E,F,G,H.
(1)求證:△ABG≌△CDE;
(2)猜一猜:四邊形EFGH是什么樣的特殊四邊形?證明你的猜想;
(3)若AB=6,BC=4,∠DAB=60°,求四邊形EFGH的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某風(fēng)景區(qū)的沿湖公路AB=3千米,BC=4千米,CD=12千米,AD=13千米,其中AB^BC,圖中陰影是草地,其余是水面.那么乘游艇游點C出發(fā),行進速度為每小時11千米,到達對岸AD最少要用 小時.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC、BC于點D、E,BC的延長線于⊙O的切線AF交于點F.
(1)求證:∠ABC=2∠CAF;
(2)若AC=2,CE:EB=1:4,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊上一點,PQ垂直平分BE,分別交AD、BE、BC于點P、O、Q,連接BP、QE
(1)求證:四邊形BPEQ是菱形:
(2)若AB=6,F是AB中點,OF=4,求菱形BPEQ的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=(x﹣3)2與x軸交于A、B兩點(點A在B的左側(cè)),與y軸交于C點,頂點D.
(1)求點A、B、D三點的坐標;
(2)連結(jié)CD交x軸于G,過原點O作OE⊥CD,垂足為H,交拋物線對稱軸于E,求出E點的縱坐標;
(3)以②中點E為圓心,1為半徑畫圓,在對稱軸右側(cè)的拋物線上有一動點P,過P作⊙E的切線,切點為Q,當PQ的長最小時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,正方形ABCD中,以CD為邊作等邊三角形CDE,求∠AED的度數(shù).(畫出相應(yīng)的圖形并解答)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com