【題目】如圖,六邊形ABCDEF的內(nèi)角都相等,∠FAD=60°.
(1)求∠ADE的度數(shù);
(2)求證:EF∥BC.
【答案】(1)∠ADE=60°;(2)詳見解析.
【解析】
(1)由于六邊形的內(nèi)角和為720°,然后利用六邊形ABCDEF的內(nèi)角都相等得到每個內(nèi)角的度數(shù)為120°,而∠DAB=60°,四邊形ABCD的內(nèi)角和為360°,由此即可分別求出∠CDA和∠EDA,最后利用平行線的判定方法即可推知AB∥DE,根據(jù)平行線的性質(zhì)即可得到結(jié)論;
(2)根據(jù)平行線的判定即可得到結(jié)論.
(1)∵六邊形ABCDEF的內(nèi)角都相等,
∴∠BAF=∠B=∠C=∠CDE=∠E=∠F=120°,
∵∠FAD=60°,
∴∠F+∠FAD=180°,
∴EF∥AD,
∴∠E+∠ADE=180°,
∴∠ADE=60°;
(2)∵∠BAD=∠FAB﹣∠FAD=60°,
∴∠BAD+∠B=180°,
∴AD∥BC,
∴EF∥BC.
科目:初中數(shù)學 來源: 題型:
【題目】已知,關(guān)于x的分式方程=1.
(1)當m=﹣1時,請判斷這個方程是否有解并說明理由;
(2)若這個分式方程有實數(shù)解,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在折紙活動中,小李制作了一張△ABC的紙片,點D,E分別在邊AB,AC上,將△ABC沿著DE折疊壓平,A與A'重合.
(1)若∠B=50°,∠C=60°,求∠A的度數(shù);
(2)若∠1+∠2=130°,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖表示玲玲騎自行車離家的距離與時間的關(guān)系.她9點離開家,15點回到家,請根據(jù)圖象回答下列問題:
(1)玲玲到達離家最遠的地方是什么時間?她離家多遠?
(2)她何時開始第一次休息?休息了多長時間?
(3)第一次休息時,她離家多遠?
(4)11點~12點她騎車前進了多少千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABO中,∠BAO=90°,AO=AB,BO=8,點A的坐標(﹣8,0),點C在線段AO上以每秒2個單位長度的速度由A向O運動,運動時間為t秒,連接BC,過點A作AD⊥BC,垂足為點E,分別交BO于點F,交y軸于點 D.
(1)用t表示點D的坐標 ;
(2)如圖1,連接CF,當t=2時,求證:∠FCO=∠BCA;
(3)如圖2,當BC平分∠ABO時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)表中的信息判斷,下列語句中正確的是( )
x | 15 | 15.1 | 15.2 | 15.3 | 15.4 | 15.5 | 15.6 | 15.7 | 15.8 | 15.9 | 16 |
x2 | 225 | 228.01 | 231.04 | 234.09 | 237.16 | 240.25 | 243.36 | 246.49 | 249.64 | 252.81 | 256 |
A.
B.235的算術(shù)平方根比15.3小
C.只有3個正整數(shù)n滿足15.5
D.根據(jù)表中數(shù)據(jù)的變化趨勢,可以推斷出16.12將比256增大3.19
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線交x軸于點A,交y軸于點B,交直線于點C,點D與點B關(guān)于x軸對稱,連接AD交直線于點E.
填空:______.
求直線AD的解析式;
在x軸上存在一點P,則的和最小為______;直接填空即可
當時,點Q為y軸上的一個動點,使得為等腰直角三角形,求點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國家發(fā)改委、工業(yè)和信息化部、財政部公布了“節(jié)能產(chǎn)品惠民工程”,公交公司積極響應將舊車換成節(jié)能環(huán)保公交車,計劃購買A型和B型兩種環(huán)保型公交車10輛,其中每臺的價格、年載客量如表:
A型 | B型 | |
價格(萬元/臺) | x | y |
年載客量/萬人次 | 60 | 100 |
若購買A型環(huán)保公交車1輛,B型環(huán)保公交車2輛,共需400萬元;若購買A型環(huán)保公交車2輛,B型環(huán)保公交車1輛,共需350萬元.
(1)求x、y的值;
(2)如果該公司購買A型和B型公交車的總費用不超過1200萬元,且確保10輛公交車在該線路的年載客量總和不少于680萬人次,問有哪幾種購買方案?
(3)在(2)的條件下,哪種方案使得購車總費用最少?最少費用是多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)y=-x2+bx+c的圖象與x軸交于A、B兩點,與y軸交于C(0,3),A點在原點的左側(cè),B點的坐標為(3,0).點P是拋物線上一個動點,且在直線BC的上方.
(1)求這個二次函數(shù)的表達式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點P,使四邊形POP′C為菱形?若存在,請求出此時點P的坐標;若不存在,請說明理由.
(3)當點P運動到什么位置時,四邊形 ABPC的面積最大,并求出此時點P的坐標和四邊形面積的最大值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com