【題目】一位籃球運動員在距離籃圈中心水平距離4m處起跳投籃,球沿一條拋物線運動,當球運動的水平距離為2.5m時,達到最大高度3.5m,然后準確落入籃框內.已知籃圈中心距離地面高度為3.05m,在如圖所示的平面直角坐標系中,下列說法正確的是( 。

A. 此拋物線的解析式是y=﹣x2+3.5

B. 籃圈中心的坐標是(4,3.05)

C. 此拋物線的頂點坐標是(3.5,0)

D. 籃球出手時離地面的高度是2m

【答案】A

【解析】

A、設拋物線的表達式為y=ax2+3.5,依題意可知圖象經(jīng)過的坐標,由此可得a的值;B、根據(jù)函數(shù)圖象判斷;C、根據(jù)函數(shù)圖象判斷;D、設這次跳投時,球出手處離地面hm,因為(1)中求得y=﹣0.2x2+3.5,當x=﹣2,5時,即可求得結論.

解:A、∵拋物線的頂點坐標為(0,3.5),

∴可設拋物線的函數(shù)關系式為y=ax2+3.5.

∵籃圈中心(1.5,3.05)在拋物線上,將它的坐標代入上式,得 3.05=a×1.52+3.5,

a=﹣

y=﹣x2+3.5.

故本選項正確;

B、由圖示知,籃圈中心的坐標是(1.5,3.05),

故本選項錯誤;

C、由圖示知,此拋物線的頂點坐標是(0,3.5),

故本選項錯誤;

D、設這次跳投時,球出手處離地面hm,

因為(1)中求得y=﹣0.2x2+3.5,

∴當x=﹣2.5時,

h=﹣0.2×(﹣2.5)2+3.5=2.25m.

∴這次跳投時,球出手處離地面2.25m.

故本選項錯誤.

故選:A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖中,,的垂直平分線分別交,,垂足分別是,.

1)若,求的周長.

2)若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】同一個圓的內接正方形和正三角形的邊心距的比為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點Px軸正半軸上的一個點,過點Px軸的垂線,交函數(shù)的圖象于點A,交函數(shù)的圖象于點B,過點Bx軸的平行線,交于點C,邊接AC.

(1)當點P的坐標為(1,0)時,求ABC的面積;

(2)當點P的坐標為(1,0)時,在y軸上是否存在一點Q,使A、O、Q三點為頂點的三角形QAO為等腰三角形?若存在,請直接寫出Q點的坐標;若不存在,說明理由.

(3)請你連接OAOC.當點P的坐標為(t,0)時,OAC的面積是否隨t的值的變化而變化?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,,,若點從點出發(fā),以每秒的速度沿折線運動,設運動時間為秒.

備用圖

1___________;

2)若點恰好在的角平分線上,求此時的值:

3)在運動過程中,當為何值時,為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在ABC中,點D、E分別是AB、AC上一點,且AD=AE,ABE=ACDBECD相交于點F.試判斷BCF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABD、△AEC都是等邊三角形,連接BE,DC交于O

(1)求證:BE=DC

(2) 求∠DOB度數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線經(jīng)過點A0),B,0),且與y軸相交于點C

1求這條拋物線的表達式;

2)求∠ACB的度數(shù);

3設點D是所求拋物線第一象限上一點,且在對稱軸的右側,點E在線段AC上,且DEAC,當DCEAOC相似時,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:我們都知道,

于是,-2x2+40x+5

=-2(x2-20x)+5

=-2(x2-20x+100)+200+5

=-2(x-10)2+205

又因為,所以,

所以,-2x2+40x+5有最大值205.

如圖,某農戶準備用長34米的鐵柵欄圍成一邊靠墻的長方形羊圈ABCD和一個邊長為1米的正方形狗屋CEFG.設AB=x.

(1)請用含x的代數(shù)式表示BC的長(直接寫答案)

(2)設山羊活動范圍即圖中陰影部分的面積為S,試用含x的代數(shù)式表示S,并計算當x=5時S的值;

(3)試求出山羊活動范圍面積S的最大值.

查看答案和解析>>

同步練習冊答案