【題目】如圖,已知直線ABCD相交于點(diǎn)O,在∠COB的內(nèi)部作射線OE.

1)若∠AOC=36°COE=90°,求∠BOE的度數(shù);

2)若∠COEEOBBOD=432,求∠AOE的度數(shù).

【答案】解:(1)54°;(2)120°

【解析】試題分析:(1)由對(duì)頂角相等可得∠AOC=BOD=36°,由∠COE=90°可得∠EOD=90°,所以∠BOE=EODBOD=54°;(2由∠COEEOBBOD=432,可得∠EOB=180°×=60°,所以∠AOE=180°EOB=120°.

試題解析:

解:(1∵∠AOC=36°,COE=90°

∴∠BOD=36°,EOD=90°

∴∠BOE=9036°=54°;

2COEEOBBOD=432,

∴∠EOB=180°×=60°,

∴∠AOE=180°EOB=180°60°=120°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某單位職工的年齡(取正整數(shù))的頻率分布直方圖,根據(jù)圖中提供的信息,回答下列問(wèn)題:

(1)該單位共有職工多少人?

(2)不小于38歲但小于44歲的職工人數(shù)占職工總?cè)藬?shù)的百分比是多少?

(3)如果42歲的職工有4人,那么年齡在42歲以上的職工有幾人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形OABC中,OA=3,OC=5,分別以OA、OC所在直線為x軸、y軸,建立平面直角坐標(biāo)系,D是邊CB上的一個(gè)動(dòng)點(diǎn)(不與C、B重合),反比例函數(shù)yk>0)的圖象經(jīng)過(guò)點(diǎn)D且與邊BA交于點(diǎn)E,連接DE

(1)連接OE,若EOA的面積為3,則k=___________;

(2)是否存在點(diǎn)D,使得點(diǎn)B關(guān)于DE的對(duì)稱點(diǎn)在OC上?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將五個(gè)邊長(zhǎng)都為2cm的正方形按如圖所示擺放,點(diǎn)A、B、C、D分別是四個(gè)正方形的中心,則圖中四塊陰影面積的和為( )

A.2cm2 B.4cm2 C.6cm2 D.8cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,,點(diǎn)D是邊AB上一點(diǎn),EAC的中點(diǎn),過(guò)點(diǎn)CCFAB, DE的延長(zhǎng)線于點(diǎn)F。

(1)求證:DE=FE;

(2)CD=CF,∠A=40°,求∠BCD的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過(guò)點(diǎn)C,且AD⊥MN于D,BE⊥MN于E.

(1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),求證:DE=AD+BE;

(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),求證:DE=AD-BE;

(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時(shí),試問(wèn)DE、AD、BE具有怎樣的等量關(guān)系?請(qǐng)直接寫出這個(gè)等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,直線ABCD

(1)如圖1,點(diǎn)E在直線BD的左側(cè),猜想∠ABE、CDE、BED的數(shù)量關(guān)系,并證明你的結(jié)論;

(2)如圖2,點(diǎn)E在直線BD的左側(cè),BF、DF分別平分∠ABE、CDE,猜想∠BFD和∠BED的數(shù)量關(guān)系,并證明你的結(jié)論;

(3)如圖3,點(diǎn)E在直線BD的右側(cè),BF、DF分別平分∠ABE、CDE;那么第(2)題中∠BFD和∠BED的數(shù)量關(guān)系的猜想是否仍成立?如果成立,請(qǐng)證明;如果不成立,請(qǐng)寫出你的猜想,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程:

(1)x24x20;    (2)x23x20;

(3)3x27x40.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,∠ACB=90°,CDAB,垂足為點(diǎn)D,已知AC=3,BC=4.

(1)線段AD,CD,CD,BD是不是成比例線段?寫出你的理由;

(2)在這個(gè)圖形中,能否再找出其他成比例的四條線段?如果能,請(qǐng)至少寫出兩組.

查看答案和解析>>

同步練習(xí)冊(cè)答案