【題目】經(jīng)過三邊都不相等的三角形的一個(gè)頂點(diǎn)的線段把三角形分成兩個(gè)小三角形,如果其中一個(gè)是等腰三角形,另外一個(gè)三角形和原三角形相似,那么把這條線段定義為原三角形的和諧分割線.如圖,線段CDABC和諧分割線”,ACD為等腰三角形,CBDABC相似,A=46°,求∠ACB的度數(shù).

【答案】ACB的度數(shù)為113°92°.

【解析】

ACD是等腰三角形,∠ADC>BCD,推出∠ADC>A,即AC≠CD,分兩種情形討論①當(dāng)AC=AD時(shí),②當(dāng)DA=DC時(shí),分別求解即可.

:BCDBAC,

BCD=A=46°.

ACD是等腰三角形,ADC>BCD,

ADC>A,ACCD.

當(dāng)AC=AD時(shí),ACD=ADC=(180°-46°)=67°,

ACB=67°+46°=113°;當(dāng)DA=DC時(shí),ACD=A=46°,

ACB=46°+46°=92°.

綜上所述,ACB的度數(shù)為113°92°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的方程

(1)若方程有兩個(gè)有理數(shù)根,求整數(shù)的值

(2)滿足不等式,試討論方程根的情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸于點(diǎn),過軸,雙曲線、兩點(diǎn)(點(diǎn)在已知直線上),若,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,AEBC于點(diǎn)E,∠BAE=30°AD=4cm

1)求菱形ABCD的各角的度數(shù);

2)求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,內(nèi)并排不重疊放入邊長為1的小正方形紙片,第一層小紙片的一條邊都在AB上,首尾兩個(gè)正方形各有一個(gè)頂點(diǎn)分別在ACBC上,依次這樣擺放上去,則最多能擺放  個(gè)小正方形紙片.

A. 14個(gè) B. 15個(gè) C. 16個(gè) D. 17個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知網(wǎng)格上最小的正方形的邊長為(長度單位),點(diǎn)在格點(diǎn)上.

1)直接在平面直角坐標(biāo)系中作出關(guān)于軸對稱的圖形(點(diǎn)對應(yīng)點(diǎn),點(diǎn)對應(yīng)點(diǎn));

2的面積為 (面積單位)(直接填空);

3)點(diǎn)到直線的距離為 (長度單位)(直接填空);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù) y=x+1 的圖象與 y 軸交于點(diǎn) A一次函數(shù) y=kx+b 的圖象經(jīng)過點(diǎn) B0,﹣1),與x 以及 y=x+1 的圖象分別交于點(diǎn) C、D,且點(diǎn) D 的坐標(biāo)為1n),

1n= ,k= ,b= ;

2函數(shù) y=kx+b 的函數(shù)值大于函數(shù) y=x+1 的函數(shù)值則X的取值范圍是 ;

3求四邊形 AOCD 的面積;

4 x軸上是否存在點(diǎn) P,使得以點(diǎn) PC,D 為頂點(diǎn)的三角形是直角三角形?若存在求出點(diǎn) P 的坐標(biāo); 若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC,BD交于點(diǎn)O,過點(diǎn)AAEBC于點(diǎn)E,延長BCF,使CF=BE,連接DF

1)求證:四邊形AEFD是矩形;

2)若AC=4,∠ABC=60°,求矩形AEFD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖:點(diǎn)(1,3)在函數(shù)y=(x>0)的圖象上,矩形ABCD的邊BCx軸上,E是對角線BD的中點(diǎn),函數(shù)y=(x>0)的圖象又經(jīng)過A、E兩點(diǎn),點(diǎn)E的橫坐標(biāo)為m,解答下列問題:

(1)k的值;

(2)求點(diǎn)A的坐標(biāo);(用含m代數(shù)式表示)

(3)當(dāng)∠ABD=45°時(shí),求m的值.

查看答案和解析>>

同步練習(xí)冊答案