【題目】如圖所示,正方形EFGH是由正方形ABCD經(jīng)過(guò)位似變換得到的,點(diǎn)O是位似中心,EF,G,H分別是OA,OBOC,OD的中點(diǎn),則正方形EFGH與正方形ABCD的面積比是( 。

A. 16B. 15C. 14D. 12

【答案】C

【解析】

由正方形EFGH是由正方形ABCD經(jīng)過(guò)位似變換得到的,點(diǎn)O是位似中心,EF,G,H分別是OA,OB,OC,OD的中點(diǎn),易求得位似比等于EHAD=12,又由相似三角形面積的比等于相似比的平方,即可求得正方形EFGH與正方形ABCD的面積比.

∵正方形EFGH是由正方形ABCD經(jīng)過(guò)位似變換得到的,點(diǎn)O是位似中心,

∴正方形EFGH∽正方形ABCD,

EF,GH分別是OA,OB,OC,OD的中點(diǎn),

EH=AD,

即位似比為:EHAD=12,

∴正方形EFGH與正方形ABCD的面積比是:14

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC的外接圓,AB為直徑,∠BAC的平分線交于點(diǎn)D,過(guò)點(diǎn)D作DEAC分別交AC、AB的延長(zhǎng)線于點(diǎn)E、F.

(1)求證:EF是的切線;

(2)若AC=4,CE=2,求的長(zhǎng)度.(結(jié)果保留

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0,a,b,c為常數(shù))圖象如圖所示,根據(jù)圖象解答問(wèn)題.

(1)寫(xiě)出過(guò)程ax2+bx+c=0的兩個(gè)根.

(2)寫(xiě)出不等式ax2+bx+c>0的解集.

(3)若方程ax2+bx+c=k有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在圖(1)與圖(2)中,每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,△AOB的三個(gè)頂點(diǎn)都在格點(diǎn)上.

1)將△OAB關(guān)于點(diǎn)P對(duì)稱(chēng),在圖(1)中畫(huà)出對(duì)稱(chēng)后的圖形△O′A′B′,并涂黑;

2)先畫(huà)出△OAB關(guān)于y軸的軸對(duì)稱(chēng)圖形△O′A′B′,然后將△O′A′B′向右平移2個(gè)單位,再向上平移3個(gè)單位,在圖(2)中畫(huà)出平移后的圖形△O″A″B″,并涂黑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=x2x+m的圖象經(jīng)過(guò)點(diǎn)A(1,﹣2)

(1)求此函數(shù)圖像與坐標(biāo)軸的交點(diǎn)坐標(biāo);

(2)P(-2,y1),Q(5,y2)兩點(diǎn)在此函數(shù)圖像上,試比較y1,y2的大小

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,是一次函數(shù)的圖象和反比例函數(shù)的圖象的兩個(gè)交點(diǎn).

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求的面積;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】嘉淇正在參加全國(guó)數(shù)學(xué)競(jìng)賽,只要他再答對(duì)最后兩道單選題就能順利過(guò)關(guān),其中第一道題有3個(gè)選項(xiàng),第二道題有4個(gè)選項(xiàng),而這兩道題嘉淇都不會(huì),不過(guò)嘉淇還有一次求助沒(méi)有使用(使用求助可讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).

1)如果嘉淇第一題不使用求助,隨機(jī)選擇一個(gè)選項(xiàng),那么嘉淇答對(duì)第一道題的概率是多少?

2)若嘉淇將求助留在第二題使用,請(qǐng)用畫(huà)樹(shù)狀圖或列表法求嘉淇能順利過(guò)關(guān)的概率;

3)請(qǐng)你從概率的角度分析,建議嘉洪在第幾題使用求助,才能使他過(guò)關(guān)的概率較大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠C=90°,AE平分∠BACBC于點(diǎn)E,OAB上一點(diǎn),經(jīng)過(guò)A,E兩點(diǎn)的⊙OAB于點(diǎn)D,連接DE,作∠DEA的平分線EF交⊙O于點(diǎn)F,連接AF.

(1)求證:BC是⊙O的切線;

(2)sinEFA=,AF=,求線段AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)的圖象如圖所示,則下列結(jié)論:;②;③;④;⑤的解為,其中正確的有(

A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案