【題目】已知關(guān)于 x,y 的方程組的解滿足 x0,y0

(1)x= y= (用含 a 的代數(shù)式表示);

(2)求 a 的取值范圍;

(3)若 2x8y=2m,用含有 a 的代數(shù)式表示 m,并求 m 的取值范圍.

【答案】(1)﹣2a+1;﹣a+2;(2)<a<2;(3)m=5a+7;﹣3m

【解析】(1)利用②-①可消掉y,利用含a的式子表示x,再把a的式子表示x代入①可得含a的式子表示y;

(2)根據(jù)x<0,y>0,可得,再解不等式組即可;

(3)根據(jù)題意可得x+3y=m,然后利用代入法可得a=,再根據(jù)(2)中a的范圍可確定m的范圍.

1)

-①得:x=-2a+1;

把③代入①得:y=-a+2;

(2)x<0,y>0,

,

解得:<a<2;

(3)2x8y=2m,

2x23y=2m,

2 x+3y=2m,

x+3y=m,

-2a+1+3(-a+2)=m,

m=-5a+7,

a=,

<a<2,

<2,

解得:m取值范圍:-3<m<

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在Rt△ABC中,∠ABC=90°,點(diǎn)D是BC邊的中點(diǎn),分別以B、C為圓心,大于線段BC長度一半的長為半徑畫弧,兩弧在直線BC上方的交點(diǎn)為P,直線PD交AC于點(diǎn)E,連接BE,則下列結(jié)論:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED= AB中,一定正確的是(
A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解同學(xué)對(duì)體育活動(dòng)的喜愛情況,某校設(shè)計(jì)了“你最喜歡的體育活動(dòng)是哪一項(xiàng)(僅限一項(xiàng))”的調(diào)查問卷該校對(duì)本校學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,以下是根據(jù)調(diào)查數(shù)據(jù)得到的統(tǒng)計(jì)圖的一部分請(qǐng)根據(jù)以上信息解答以下問題:

(1)該校對(duì)多少名學(xué)生進(jìn)行了抽樣調(diào)查?

(2)請(qǐng)補(bǔ)全圖1并標(biāo)上數(shù)據(jù) 圖2中x=

(3)若該校共有學(xué)生900人,請(qǐng)你估計(jì)該校最喜歡跳繩項(xiàng)目的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+3(a≠0)與x軸、y軸分別交于點(diǎn)A(﹣1,0)、B(3,0)、點(diǎn)C三點(diǎn).

(1)試求拋物線的解析式;
(2)點(diǎn)D(2,m)在第一象限的拋物線上,連接BC、BD.試問,在對(duì)稱軸左側(cè)的拋物線上是否存在一點(diǎn)P,滿足∠PBC=∠DBC?如果存在,請(qǐng)求出點(diǎn)P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由;
(3)如圖2,在(2)的條件下,將△BOC沿x軸正方向以每秒1個(gè)單位長度的速度向右平移,記平移后的三角形為△B′O′C′.在平移過程中,△B′O′C′與△BCD重疊的面積記為S,設(shè)平移的時(shí)間為t秒,試求S與t之間的函數(shù)關(guān)系式?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四川雅安發(fā)生地震后,某校學(xué)生會(huì)向全校1900名學(xué)生發(fā)起了心系雅安捐款活動(dòng),為了解捐款情況,學(xué)生會(huì)隨機(jī)調(diào)查了部分學(xué)生的捐款金額,并用得到的數(shù)據(jù)繪制了如下統(tǒng)計(jì)圖①和圖②,請(qǐng)根據(jù)相關(guān)信息,解答下列是問題:

(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為 ,圖①中m的值是 ;

(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(3)根據(jù)樣本數(shù)據(jù),估計(jì)該校本次活動(dòng)捐款金額為10元的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)G在對(duì)角線BD不與點(diǎn)重合于點(diǎn)于點(diǎn)F,連結(jié)AG

寫出線段長度之間的數(shù)量關(guān)系,并說明理由;

若正方形ABCD的邊長為,求線段BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形 ABCD 中,點(diǎn) G 是邊 CD 上一點(diǎn)(不與端點(diǎn) C,D 重合,以 CG為邊在正方形 ABCD 外作正方形 CEFG,且 B、CE 三點(diǎn)在同一直線上,設(shè)正方形 ABCD 和正方形 CEFG 的邊長分別為 a b

(1)分別用含 ab 的代數(shù)式表示圖 1 和圖 2 中陰影部分的面積 S1S2;

(2)如果 a+b=5,ab=3,求 S1 的值;

(3)當(dāng) S1S2 時(shí),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,銳角△ABC中,∠ACB=30°,AB=5,ABC的面積為23

1)若點(diǎn)PAB邊上且CP=,DE分別為邊AC,BC上的動(dòng)點(diǎn)求△PDE周長的最小值;

2)假設(shè)一只小羊在△ABC區(qū)域內(nèi),從路邊AB某點(diǎn)出發(fā)跑到水溝邊AC喝水,然后跑向路邊BC吃草,再跑回出發(fā)點(diǎn)處休息,直接寫出小羊所跑的最短路程

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A=104°-2,ABC=76°+2,BDCDD,EFCDF.

求證:∠1=2.請(qǐng)你完成下面證明過程.

證明:因?yàn)椤?/span>A=104°-2,ABC=76°+2,(

所以 A+ABC=104°-2+76°+2, ( 等式性質(zhì)

A+ABC=180°

所以 ADBC,(

所以 1=DBC,(

因?yàn)?/span> BDDC,EFDC,(

所以 BDC=90°,EFC=90°,( )

所以 BDC=EFC,

所以 BD ,(

所以 2=DBC,(

所以 1=2 ( ).

查看答案和解析>>

同步練習(xí)冊(cè)答案