【題目】如圖,菱形ABCD中,∠B=120°,AB=2,將圖中的菱形ABCD繞點(diǎn)A沿逆時(shí)針方向旋轉(zhuǎn),得菱形AB′C′D′,若∠BAD′=110°,在旋轉(zhuǎn)的過程中,點(diǎn)C經(jīng)過的路線長為

【答案】
【解析】解:連接AC、AC′,作BM⊥AC于M,如圖所示:∵四邊形ABCD是菱形,∠B=120°,
∴∠BAC=∠D′AC′=30°,
∴BM= AB=1,
∴AM= BM= ,
∴AC=2AM=2
∵∠BAD′=110°,
∴∠CAC′=110°﹣30°﹣30°=50°,
∴點(diǎn)C經(jīng)過的路線長= = π;
所以答案是:

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解菱形的性質(zhì)的相關(guān)知識(shí),掌握菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長的積的一半,以及對(duì)旋轉(zhuǎn)的性質(zhì)的理解,了解①旋轉(zhuǎn)后對(duì)應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對(duì)應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B兩村在一條小河的同一側(cè),要在河邊建一水廠向兩村供水.

.若要使自來水廠到兩村的距離相等,廠址P應(yīng)選在哪個(gè)位置?

.若要使自來水廠到兩村的輸水管用料最省,廠址Q應(yīng)選在哪個(gè)位置?請(qǐng)將上述兩種情況下的自來水廠廠址標(biāo)出,并保留作圖痕跡.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個(gè)小方格都是正方形,△ABC的頂點(diǎn)均在格點(diǎn)上,建立平面直角坐標(biāo)系.
(1)以原點(diǎn)O為對(duì)稱中心,畫出與△ABC關(guān)于原點(diǎn)O對(duì)稱的△A1B1C1 , A1的坐標(biāo)是
(2)將原來的△ABC繞著點(diǎn)(﹣2,1)順時(shí)針旋轉(zhuǎn)90°得到△A2B2C2 , 試在圖上畫出△A2B2C2的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1ABC中,CDABD,且BD : AD : CD2 : 3 : 4

1)求證:AB=AC;

2)已知SABC40cm2,如圖2,動(dòng)點(diǎn)M從點(diǎn)B出發(fā)以每秒1cm的速度沿線段BA向點(diǎn)A 運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)A出發(fā)以相同速度沿線段AC向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)整個(gè)運(yùn)動(dòng)都停止. 設(shè)點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒),

①若DMN的邊與BC平行,求t的值;

②若點(diǎn)E是邊AC的中點(diǎn),問在點(diǎn)M運(yùn)動(dòng)的過程中,MDE能否成為等腰三角形?若能,求出t的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C(0,3),點(diǎn)B坐標(biāo)是(3,0),設(shè)拋物線的頂點(diǎn)為點(diǎn)D.

(1)求此拋物線的解析式與對(duì)稱軸;
(2)作直線BC,與拋物線的對(duì)稱軸交于點(diǎn)E,點(diǎn)P為直線BC上方的二次函數(shù)上一個(gè)動(dòng)點(diǎn)(且點(diǎn)P與點(diǎn)B,C不重合),過點(diǎn)P作PF∥DE交直線BC于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m;
①用含m的代數(shù)式表示線段PF的長,并求出當(dāng)m為何值時(shí),四邊形PDEF為平行四邊形?
②設(shè)△PBC的面積為S,求S與m的函數(shù)關(guān)系式.S是否存在最大值?若存在,求出最大值并求出此時(shí)P點(diǎn)坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】龜兔首次賽跑之后,輸了比賽的兔子沒有氣餒,總結(jié)反思后,和烏龜約定再賽一場.圖中的函數(shù)圖象刻畫了龜兔再次賽跑的故事(x表示烏龜從起點(diǎn)出發(fā)所行的時(shí)間,y1表示烏龜所行的路程,y2表示兔子所行的路程).有下列說法:

①兔子和烏龜同時(shí)從起點(diǎn)出發(fā);

龜兔再次賽跑的路程為1000米;

③烏龜在途中休息了10分鐘;

④兔子在途中750米處追上烏龜.

其中正確的說法共有____________個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(4,﹣1).

①以原點(diǎn)O為對(duì)稱中心,畫出△ABC關(guān)于原點(diǎn)O對(duì)稱的△A1B1C1;
②將△ABC繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到△AB2C2 , 畫出△AB2C2 , 并求出AC掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠1=20°,∠2=25°,∠A=35°,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的角平分線上的一點(diǎn),,,的中點(diǎn),點(diǎn)上的一個(gè)動(dòng)點(diǎn),若的最小值為,則的長度為____

查看答案和解析>>

同步練習(xí)冊(cè)答案