【題目】如圖,在矩形ABCD中,AB3,AD1,點(diǎn)P在線(xiàn)段AB上運(yùn)動(dòng),設(shè)AP,現(xiàn)將紙片折疊,使點(diǎn)D與點(diǎn)P重合,得折痕EF(點(diǎn)E、F為折痕與矩形邊的交點(diǎn)),再將紙片還原.

1)當(dāng)0時(shí),折痕EF的長(zhǎng)為   ;當(dāng)點(diǎn)E與點(diǎn)A重合時(shí),折痕EF的長(zhǎng)為  ;

2)請(qǐng)寫(xiě)出使四邊形EPFD為菱形的的取值范圍,并求出當(dāng)2時(shí)菱形的邊長(zhǎng);

3)令EF2,當(dāng)點(diǎn)EAD、點(diǎn)FBC上時(shí),寫(xiě)出的函數(shù)關(guān)系式.當(dāng)取最大值時(shí),判斷EAPPBF是否相似?若相似,求出的值;若不相似,請(qǐng)說(shuō)明理由.溫馨提示:用草稿紙折折看,或許對(duì)你有所幫助哦!

【答案】13;(21≤≤3,時(shí)菱形邊長(zhǎng)為;(392+9;當(dāng)取最大值時(shí)△EAP∽△PBF32

【解析】

1)當(dāng)0時(shí),點(diǎn)A與點(diǎn)P重合,則折痕EF的長(zhǎng)等于矩形ABCD中的AB的長(zhǎng);當(dāng)點(diǎn)E與點(diǎn)A重合時(shí),折痕是以AD為邊的正方形的角平分線(xiàn),可求EF;

2)由題意可知,要想使四邊形EPFD為菱形,則EFDP互相垂直平分線(xiàn)段,所以點(diǎn)E必須要在線(xiàn)段AB上,點(diǎn)F必須在線(xiàn)段DC上,由此確定的取值范圍.再利用勾股定理確定菱形的邊長(zhǎng);

3)構(gòu)造直角三角形,利用相似三角形的對(duì)應(yīng)線(xiàn)段成比例確定的值,再利用二次函數(shù)的增減性確定的最大值.

1)當(dāng)0時(shí),折痕EFAB3;

當(dāng)點(diǎn)E與點(diǎn)A重合時(shí),折痕EF

21≤≤3

當(dāng)2時(shí),如圖1,連接DEPF

∵EF為折痕,

∴DEPE,

PEm,則AE2-m,DEm

Rt△ADE中,AD2+AE2DE2

∴1+(2-m)2m2,解得m;

此時(shí)菱形邊長(zhǎng)為

3)如圖2,過(guò)EEH⊥BC;

EFH∽△DPA,

,即

∴FH3x;

EF2FH2+EH292+9;

當(dāng)F與點(diǎn)C重合時(shí),如圖3,連接PF;

∵PFDF3,

∴PB,

∴0≤≤3-;

函數(shù)92+9的值在軸的右側(cè)隨的增大而增大,

當(dāng)3-時(shí),有最大值,

此時(shí)∠EPF90°,△EAP∽△PBF

綜上所述,當(dāng)取最大值時(shí)△EAP∽△PBF,3-

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了解學(xué)生對(duì)新聞、體育、娛樂(lè)、動(dòng)畫(huà)四類(lèi)電視節(jié)目的喜愛(ài)情況,進(jìn)行了統(tǒng)計(jì)調(diào)查隨機(jī)調(diào)查了某班所有同學(xué)最喜歡的節(jié)目每名學(xué)生必選且只能選擇四類(lèi)節(jié)目中的一類(lèi)并將調(diào)查結(jié)果繪成如下不完整的統(tǒng)計(jì)圖根據(jù)兩圖提供的信息,回答下列問(wèn)題:

最喜歡娛樂(lè)類(lèi)節(jié)目的有______人,圖中______;

請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

根據(jù)抽樣調(diào)查結(jié)果,若該校有1800名學(xué)生,請(qǐng)你估計(jì)該校有多少名學(xué)生最喜歡娛樂(lè)類(lèi)節(jié)目;

在全班同學(xué)中,有甲、乙、丙、丁等同學(xué)最喜歡體育類(lèi)節(jié)目,班主任打算從甲、乙、丙、丁4名同學(xué)中選取2人參加學(xué)校組織的體育知識(shí)競(jìng)賽,請(qǐng)用列表法或樹(shù)狀圖求同時(shí)選中甲、乙兩同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一盒足量的牛奶按如圖1所示倒入一個(gè)水平放置的長(zhǎng)方體容器中,當(dāng)容器中的牛奶剛好接觸到點(diǎn)P時(shí)停止倒入,圖2是它的平面示意圖,請(qǐng)根據(jù)圖中的信息解答下列問(wèn)題:

1)填空:AP   cm,PF   cm

2)求出容器中牛奶的高度CF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我區(qū)某校組織了一次“詩(shī)詞大會(huì)”,張老師為了選拔本班學(xué)生參加,對(duì)本班全體學(xué)生詩(shī)詞的掌握情況進(jìn)行了調(diào)查,并將調(diào)查結(jié)果分為了三類(lèi):A:好,B:中,C:差.請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:

1)全班學(xué)生共有   人;

2)扇形統(tǒng)計(jì)圖中,B類(lèi)占的百分比為   %C類(lèi)占的百分比為   %;

3)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;

4)小明被選中參加了比賽.比賽中有一道必答題是:從下表所示的九宮格中選取七個(gè)字組成一句詩(shī),其答案為“便引詩(shī)情到碧霄”.小明回答該問(wèn)題時(shí),對(duì)第四個(gè)字是選“情”還是選“青”,第七個(gè)字是選“霄”還是選“宵”,都難以抉擇,若分別隨機(jī)選擇,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求小明回答正確的概率.

詩(shī)

便

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,以點(diǎn)A為圓心AB長(zhǎng)為半徑作弧交AD于點(diǎn)F,分別以點(diǎn)BF為圓心,同樣長(zhǎng)度m為半徑作弧,交于點(diǎn)G,連結(jié)AG并延長(zhǎng)交BC于點(diǎn)E,若BF6AB4,則AE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AORtABC的角平分線(xiàn),∠ACB90°,以O為圓心,OC為半徑的圓分別交AOBC于點(diǎn)D,E,連接ED并延長(zhǎng)交AC于點(diǎn)F

1)求證:AB是⊙O的切線(xiàn);

2)當(dāng)時(shí),求的值;

3)在(2)的條件下,若⊙O的半徑為4,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)軸交于點(diǎn)A和點(diǎn)B(3,0),與軸交于點(diǎn)C(0,3),P是線(xiàn)段BC上一點(diǎn),過(guò)點(diǎn)PPN軸交軸于點(diǎn)N,交拋物線(xiàn)于點(diǎn)M

(1)求該拋物線(xiàn)的表達(dá)式;

(2)如果點(diǎn)P的橫坐標(biāo)為2,點(diǎn)Q是第一象限拋物線(xiàn)上的一點(diǎn),且△QMC和△PMC的面積相等,求點(diǎn)Q的坐標(biāo);

(3)如果,求tan∠CMN的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AC4,AB2,將矩形ABCD繞點(diǎn)A旋轉(zhuǎn)得到矩形AB'C'D',使點(diǎn)B的對(duì)應(yīng)點(diǎn)B'落在AC上,B'C'AD于點(diǎn)E,在B'C'上取點(diǎn)F,使B'FAB

1)求證:AEC'E;

2)求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為O的直徑,C為O上一點(diǎn),其中AB=4,AOC=120°,P為O上的動(dòng)點(diǎn),連AP,取AP中點(diǎn)Q,連CQ,則線(xiàn)段CQ的最大值為( 。

A. 3 B. 1+ C. 1+3 D. 1+

查看答案和解析>>

同步練習(xí)冊(cè)答案