如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,3)、B(2,1)、C(3,2).
(1)判斷△ABC的形狀;
(2)如果將△ABC沿著邊AC所在直線旋轉(zhuǎn)一周,求所得旋轉(zhuǎn)體的體積.

【答案】分析:(1)先根據(jù)兩點(diǎn)間的距離公式求出三角形各邊的長(zhǎng),再根據(jù)勾股定理進(jìn)行判斷即可;
(2)旋轉(zhuǎn)后所得幾何體為一個(gè)圓錐,根據(jù)圓錐的體積計(jì)算公式計(jì)算即可.
解答:解:(1)答:三角形是等腰直角三角形;
由A、B、C三點(diǎn)的坐標(biāo)可知,
AC==,
BC==,
AB=3-1=2,
因?yàn)椋?img src="http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103001111242774768/SYS201311030011112427747021_DA/4.png">)2+(2=4=22,即AC2+BC2=AB2,AC=BC,
故此三角形是等腰直角三角形;

(2)圓錐的體積為π•BC2•AC=π×(2×=π.
點(diǎn)評(píng):此題考查了兩點(diǎn)間的距離公式和“面動(dòng)成體的相關(guān)知識(shí)”,不僅要求熟悉基本的公式運(yùn)算,還要有較強(qiáng)的空間思維能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案