(2013•營(yíng)口)如圖,直線(xiàn)AB、CD相交于點(diǎn)E,DF∥AB.若∠D=65°,則∠AEC=
115°
115°
分析:根據(jù)平行線(xiàn)性質(zhì)求出∠BED,根據(jù)對(duì)頂角相等求出∠AEC即可.
解答:解:∵DF∥AB,
∴∠BED=180°-∠D,
∵∠D=65°,
∴∠BED=115°,
∴∠AEC=∠BED=115°,
故答案為:115°.
點(diǎn)評(píng):本題考查了對(duì)頂角和平行線(xiàn)的性質(zhì)的應(yīng)用,注意:兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•營(yíng)口)如圖,△ABC中,AB=AC,AD是△ABC外角的平分線(xiàn),已知∠BAC=∠ACD.
(1)求證:△ABC≌△CDA;
(2)若∠B=60°,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•營(yíng)口)如圖,某人在山坡坡腳C處測(cè)得一座建筑物頂點(diǎn)A的仰角為60°,沿山坡向上走到P處再測(cè)得該建筑物頂點(diǎn)A的仰角為45°.已知BC=90米,且B、C、D在同一條直線(xiàn)上,山坡坡度為
1
2
(即tan∠PCD=
1
2
).
(1)求該建筑物的高度(即AB的長(zhǎng)).
(2)求此人所在位置點(diǎn)P的鉛直高度.(測(cè)傾器的高度忽略不計(jì),結(jié)果保留根號(hào)形式)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•營(yíng)口)如圖,點(diǎn)C是以AB為直徑的⊙O上的一點(diǎn),AD與過(guò)點(diǎn)C的切線(xiàn)互相垂直,垂足為點(diǎn)D.
(1)求證:AC平分∠BAD;
(2)若CD=1,AC=
10
,求⊙O的半徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•營(yíng)口)如圖1,△ABC為等腰直角三角形,∠ACB=90°,F(xiàn)是AC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)F與A、C不重合),以CF為一邊在等腰直角三角形外作正方形CDEF,連接BF、AD.
(1)①猜想圖1中線(xiàn)段BF、AD的數(shù)量關(guān)系及所在直線(xiàn)的位置關(guān)系,直接寫(xiě)出結(jié)論;
②將圖1中的正方形CDEF,繞著點(diǎn)C按順時(shí)針(或逆時(shí)針)方向旋轉(zhuǎn)任意角度α,得到如圖2、圖3的情形.圖2中BF交AC于點(diǎn)H,交AD于點(diǎn)O,請(qǐng)你判斷①中得到的結(jié)論是否仍然成立,并選取圖2證明你的判斷.
(2)將原題中的等腰直角三角形ABC改為直角三角形ABC,∠ACB=90°,正方形CDEF改為矩形CDEF,如圖4,且AC=4,BC=3,CD=
43
,CF=1,BF交AC于點(diǎn)H,交AD于點(diǎn)O,連接BD、AF,求BD2+AF2的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案