【題目】已知,在△ABC中,AB=AC.過A點的直線a從與邊AC重合的位置開始繞點A按順時針方向旋轉(zhuǎn)角θ,直線a交BC邊于點P(點P不與點B、點C重合),△BMN的邊MN始終在直線a上(點M在點N的上方),且BM=BN,連接CN.
(1)當(dāng)∠BAC=∠MBN=90°時,
①如圖a,當(dāng)θ=45°時,∠ANC的度數(shù)為△;
②如圖b,當(dāng)θ≠45°時,①中的結(jié)論是否發(fā)生變化?說明理由;
(2)如圖c,當(dāng)∠BAC=∠MBN≠90°時,請直接寫出∠ANC與∠BAC之間的數(shù)量關(guān)系,不必證明.
【答案】
(1)
解:①45°
②連接CN,當(dāng)θ≠45°時,①中的結(jié)論不發(fā)生變化.
理由如下:∵∠BAC=∠MBN=90°,AB=AC,BM=BN,
∴∠ABC=∠ACB=∠BNP=45°,
又∵∠BPN=∠APC,
∴△BNP∽△ACP,
∴ ,
又∵∠APB=∠CPN,
∴△ABP∽△CNP,
∴∠ANC=∠ABC=45°;
(2)
解:∠ANC=90°﹣ ∠BAC.
理由如下:∵∠BAC=∠MBN≠90°,AB=AC,BM=BN,
∴∠ABC=∠ACB=∠BNP= (180°﹣∠BAC),
又∵∠BPN=∠APC,
∴△BNP∽△ACP,
∴ ,
又∵∠APB=∠CPN,
∴△ABP∽△CNP,
∴∠ANC=∠ABC,
在△ABC中,∠ABC= (180°﹣∠BAC)=90°﹣ ∠BAC
【解析】解:(1)①∵∠BAC=90°,θ=45°,
∴AP⊥BC,BP=CP(等腰三角形三線合一),
∴AP=BP(直角三角形斜邊上的中線等于斜邊的一半),
又∵∠MBN=90°,BM=BN,
∴AP=PN(等腰三角形三線合一),
∴AP=PN=BP=PC,且AN⊥BC,
∴四邊形ABNC是正方形,
∴∠ANC=45°;
(1)①證明四邊形ABNC是正方形,根據(jù)正方形的對角線平分一組對角線即可求解;②根據(jù)等腰直角三角形的性質(zhì)可得∠BNP=∠ACB,然后證明△BNP和△ACP相似,根據(jù)相似三角形對應(yīng)邊成比例可得 ,再根據(jù)兩邊對應(yīng)成比例夾角相等可得△ABP和△CNP相似,然后根據(jù)相似三角形對應(yīng)角相等可得∠ANC=∠ABC,從而得解;(2)根據(jù)等腰三角形的兩底角相等求出∠BNP=∠ACB,然后證明△BNP和△ACP相似,根據(jù)相似三角形對應(yīng)邊成比例可得,再根據(jù)兩邊對應(yīng)成比例夾角相等可得△ABP和△CNP相似,然后根據(jù)相似三角形對應(yīng)角相等可得∠ANC=∠ABC,然后根據(jù)三角形的內(nèi)角和定理列式整理即可得解.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC、BD相交于點O,過點D作DE∥AC且DE=OC, 連接 CE、OE,連接AE交OD于點F.(1)求證:OE=CD (2)若菱形ABCD的邊長為6,∠ABC=60°,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著我國經(jīng)濟的高速發(fā)展,有著“經(jīng)濟晴雨表”之稱的股市也得到迅速的發(fā)展,下表是今年上證指數(shù)某一周星期一至星期五的變化情況. (注:上周五收盤時上證指數(shù)為2616點,每一天收盤時指數(shù)與前一天相比,漲記為“+”,跌記為“-”)
星 期 | 一 | 二 | 三 | 四 | 五 |
指數(shù)的變化(與前一天比較) |
⑴ 請求出這一周星期五收盤時的上證指數(shù)是多少點?
⑵ 說出這一周每一天收盤時上證指數(shù)哪一天最高?哪一天最低?分別是多少點?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了增強學(xué)生體質(zhì),學(xué)校鼓勵學(xué)生多參加體育鍛煉,小華同學(xué)馬上行動,每天圍繞小區(qū)進行晨跑鍛煉.該小區(qū)外圍道路近似為如圖所示四邊形ABCD,已知四邊形ABED為正方形,∠DCE=45°,AB=100米.小華某天繞該道路晨跑5圈,求小華該天晨跑的路程是多少?(結(jié)果保留整數(shù),)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,,分別是邊,的中點,,分別是線段,的中點.
(1)求證:≌;
(2)判斷四邊形是什么特殊四邊形,并證明你的結(jié)論;
(3)當(dāng)四邊形是正方形時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是一個菱形綠地,其周長為40 m,∠ABC=120°,在其內(nèi)部有一個四邊形花壇EFGH,其四個頂點恰好在菱形ABCD各邊的中點,現(xiàn)在準備在花壇中種植茉莉花,其單價為10元/m2,請問需投資金多少元?(結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB交x軸于點B(4,0),交y軸于點A(0,4),直線DM⊥x軸正半軸于點M,交線段AB于點C,DM=6,連接DA,∠DAC=90°.
(1)直接寫出直線AB的解析式;
(2)求點D的坐標;
(3)若點P是線段MB上的動點,過點P作x軸的垂線,交AB于點F,交過O、D、B三點的拋物線于點E,連接CE.是否存在點P,使△BPF與△FCE相似?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為a的正方形木塊在水平地面上沿直線滾動一周(沒有滑動),則它的中心點O所經(jīng)過的路徑長為( )
A.4a
B.2 πa
C.
πa
D.
a
查看答案和解析>>