【題目】如圖,在ABCD中,AD=2AB,F(xiàn)是AD的中點(diǎn),作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論:(1)∠DCF= ∠BCD,(2)EF=CF;(3)S△BEC=2S△CEF;(4)∠DFE=3∠AEF,其中正確結(jié)論的個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】C
【解析】解:(1)∵F是AD的中點(diǎn), ∴AF=FD,
∵在ABCD中,AD=2AB,
∴AF=FD=CD,
∴∠DFC=∠DCF,
∵AD∥BC,
∴∠DFC=∠FCB,
∴∠DCF=∠BCF,
∴∠DCF= ∠BCD,故正確;
·(2)延長(zhǎng)EF,交CD延長(zhǎng)線于M,
∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴∠A=∠MDF,
∵F為AD中點(diǎn),
∴AF=FD,
在△AEF和△DFM中,
,
∴△AEF≌△DMF(ASA),
∴FE=MF,∠AEF=∠M,
∵CE⊥AB,
∴∠AEC=90°,
∴∠AEC=∠ECD=90°,
∵FM=EF,
∴FC=FM,故正確;
·(3)∵EF=FM,
∴S△EFC=S△CFM ,
∵M(jìn)C>BE,
∴S△BEC<2S△EFC
故S△BEC=2S△CEF錯(cuò)誤;
·(4)設(shè)∠FEC=x,則∠FCE=x,
∴∠DCF=∠DFC=90°﹣x,
∴∠EFC=180°﹣2x,
∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,
∵∠AEF=90°﹣x,
∴∠DFE=3∠AEF,故正確,
故選:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平行四邊形的性質(zhì)的相關(guān)知識(shí),掌握平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上有A、B、C、D四個(gè)整數(shù)點(diǎn)(即各點(diǎn)均表示整數(shù)),且3AB=BC=2CD.若A、D兩點(diǎn)所表示的數(shù)分別是﹣6和5,則線段AC的中點(diǎn)所表示的數(shù)是( )
A. ﹣3 B. ﹣1 C. 3 D. ﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用代數(shù)式表示”x的2倍與Y的差的平方”,正確的是( )
A. (2x-y)2B. 2(x-y)2C. 2x-y2D. (x-2y)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把彎曲的道路改直,就能縮短兩點(diǎn)問的距離,其中蘊(yùn)含的數(shù)學(xué)原理是( )
A. 兩點(diǎn)確定一條直線B. 兩點(diǎn)之間線段最短
C. 過一點(diǎn)有無數(shù)條直線D. 線段是直線的一部分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上,點(diǎn)的初始位置表示的數(shù)為,現(xiàn)點(diǎn)做如下移動(dòng):第次點(diǎn)向左移動(dòng)個(gè)單位長(zhǎng)度至點(diǎn),第次從點(diǎn)向右移動(dòng)個(gè)單位長(zhǎng)度至點(diǎn),第次從點(diǎn)向左移動(dòng)個(gè)單位長(zhǎng)度至點(diǎn), ,按照這種移動(dòng)方式進(jìn)行下去,如果點(diǎn)與原點(diǎn)的距離不小于,那么的最小值是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形 ABCD中,點(diǎn)A、B的坐標(biāo)分別為(0,10),(8,4),點(diǎn)C在第一象限.動(dòng)點(diǎn)P在正方形ABCD的邊上,從點(diǎn)A出發(fā)沿A→B→C→D勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q以相同速度在x軸上運(yùn)動(dòng),當(dāng)P點(diǎn)到D點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)當(dāng)P點(diǎn)在邊AB上運(yùn)動(dòng)時(shí),點(diǎn)Q的橫坐標(biāo)(長(zhǎng)度單位)關(guān)于運(yùn)動(dòng)時(shí)間t(秒)的函數(shù)圖象如圖2所示,請(qǐng)寫出點(diǎn)Q開始運(yùn)動(dòng)時(shí)的坐標(biāo)及點(diǎn)P運(yùn)動(dòng)速度;
(2)求正方形邊長(zhǎng)及頂點(diǎn)C的坐標(biāo);
(3)在(1)中當(dāng)t為何值時(shí),△OPQ的面積最大,并求此時(shí)P點(diǎn)的坐標(biāo).
(4)如果點(diǎn)P、Q保持原速度速度不變,當(dāng)點(diǎn)P沿A→B→C→D勻速運(yùn)動(dòng)時(shí),OP與PQ能否相等,若能,寫出所有符合條件的t的值;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=(a﹣1)x2﹣x+a2﹣1圖象經(jīng)過原點(diǎn),則a的取值為( 。
A.a=±1B.a=1C.a=﹣1D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交于點(diǎn)A(1,4)、點(diǎn)B(﹣4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com