【題目】如圖,在中,,點(diǎn)邊上的中點(diǎn),分別垂直、于點(diǎn).求證:

【答案】見解析

【解析】

證法一:連接AD,由三線合一可知AD平分BAC,根據(jù)角平分線的性質(zhì)定理解答即可;證法二:根據(jù)“AASBED≌△CFD即可.

證法一:連接AD

ABAC,點(diǎn)DBC邊上的中點(diǎn),

AD平分BAC(等腰三角形三線合一性質(zhì)),

DE、DF分別垂直ABAC于點(diǎn)EF,

DEDF(角平分線上的點(diǎn)到角兩邊的距離相等).

證法二:在ABC中,

ABAC,

∴∠BC(等邊對(duì)等角).

點(diǎn)DBC邊上的中點(diǎn),

BDDC ,

DE、DF分別垂直AB、AC于點(diǎn)EF

∴∠BEDCFD90°.

BEDCFD

∴△BED≌△CFDAAS),

DEDF(全等三角形的對(duì)應(yīng)邊相等).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖中的小方格都是邊長(zhǎng)為1的正方形, △ABC△A′ B′ C′是關(guān)于點(diǎn)0為位似中心的位似圖形,它們的頂點(diǎn)都在小正方形的頂點(diǎn)上.

(1)畫出位似中心點(diǎn)0

(2)求出△ABC△A′B′C′的位似比;

(3)以點(diǎn)0為位似中心,再畫一個(gè)△A1B1C1,使它與△ABC的位似比等于1.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠BAC30°,EAB邊的中點(diǎn),以BE為邊作等邊BDE,連接ADCD

1)求證:ADCD;

2)①畫圖:在AC邊上找一點(diǎn)H,使得BH+EH最。ㄒ螅簩懗鲎鲌D過程并畫出圖形,不用說明作圖依據(jù));

②當(dāng)BC2時(shí),求出BH+EH的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,點(diǎn)分別為、中點(diǎn),,,若,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】情境觀察:

如圖1,△ABC中,AB=AC,∠BAC=45°,CDABAEBC,垂足分別為DE,CDAE交于點(diǎn)F

①寫出圖1中所有的全等三角形

②線段AF與線段CE的數(shù)量關(guān)系是

問題探究:

如圖2,△ABC中,∠BAC=45°,AB=BCAD平分∠BAC,ADCD,垂足為D,ADBC交于點(diǎn)E

求證:AE=2CD

拓展延伸:

如圖3,△ABC中,∠BAC=45°,AB=BC,點(diǎn)DAC上,∠EDC= BACDECE,垂足為EDEBC交于點(diǎn)F.求證:DF=2CE

要求:請(qǐng)你寫出輔助線的作法,并在圖3中畫出輔助線,不需要證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】安全教育,警鐘長(zhǎng)鳴,為此,某校隨機(jī)抽取了九年級(jí)(一)班的學(xué)生對(duì)安全知識(shí)的了解情況進(jìn)行了一次調(diào)查統(tǒng)計(jì)圖1和圖2是通過數(shù)據(jù)收集后,繪制的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中提供的信息,解答以下問題:

(1)此次調(diào)查共抽查了多少名學(xué)生;

(2)補(bǔ)全統(tǒng)計(jì)圖;

(3)在扇形統(tǒng)計(jì)圖中,對(duì)安全知識(shí)的了解情況為較差部分所對(duì)應(yīng)的圓心角的度數(shù)是多少;

(4)若全校有1800名學(xué)生,估計(jì)對(duì)安全知識(shí)的了解情況為很好的學(xué)生共有多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,拋物線y=ax2+bx+c經(jīng)過A(1,0)、B(5,0)、C(0,5)三點(diǎn).

(1)求拋物線的函數(shù)關(guān)系式;

(2)求拋物線的頂點(diǎn)坐標(biāo)、對(duì)稱軸;

(3)若過點(diǎn)C的直線與拋物線相交于點(diǎn)E(4,m),請(qǐng)連接CB,BE并求出△CBE的面積S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,點(diǎn)E,F分別在邊ABCD上,點(diǎn)G、H在對(duì)角線AC上,AGCH,BEDF

1)求證:四邊形EGFH是平行四邊形;

2)若EGEH,AB8BC4.求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象經(jīng)過(2,1),(1,1)兩點(diǎn),則下列關(guān)于此二次函數(shù)的說法正確的是【 】

A.y的最大值小于0      B.當(dāng)x=0時(shí),y的值大于1

C.當(dāng)x=1時(shí),y的值大于1  D.當(dāng)x=3時(shí),y的值小于0

查看答案和解析>>

同步練習(xí)冊(cè)答案