【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,點D是AB的中點,連接CD,過B作BE⊥CD交CD的延長線于點E,連接AE,過A作AF⊥AE交CD于點F.
(1)求證:AE=AF;
(2)求證:CD=2BE+DE.
【答案】(1)、證明過程見解析;(2)、證明過程見解析
【解析】
試題分析:(1)、通過證△AEB≌△AFC(SAS),得到AE=AF;(2)、如圖,過點A作AG⊥EC,垂足為G,通過證△BED≌△AGD(AAS),得到ED=GD,BE=AG,易證CF=BE=AG=GF.因為CD=DG+GF+FC,所以CD=DE+BE+BE,故CD=2BE+DE.
試題解析:(1)、如圖,∵∠BAC=90°,AF⊥AE, ∴∠EAB+∠BAF=∠BAF+∠FAC=90°,
∴∠EAB=∠FAC, ∵BE⊥CD, ∴∠BEC=90°, ∴∠EBD+∠EDB=∠ADC+∠ACD=90°,
∵∠EDB=∠ADC, ∴∠EBA=∠ACF, ∴在△AEB與△AFC中,,
∴△AEB≌△AFC(ASA), ∴AE=AF;
(2)、如圖,過點A作AG⊥EC,垂足為G. ∵AG⊥EC,BE⊥CE, ∴∠BED=∠AGD=90°,
∵點D是AB的中點, ∴BD=AD. ∴在△BED與△AGD中,, ∴△BED≌△AGD(AAS), ∴ED=GD,BE=AG, ∵AE=AF ∴∠AEF=∠AFE=45° ∴∠FAG=45° ∴∠GAF=∠GFA, ∴GA=GF, ∴CF=BE=AG=GF, ∵CD=DG+GF+FC, ∴CD=DE+BE+BE, ∴CD=2BE+DE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】微電子技術(shù)的不斷進(jìn)步,使半導(dǎo)體材料的精細(xì)加工尺寸大幅度縮。撤N電子元件的面積大約為0.000000 7平方毫米,用科學(xué)記數(shù)法表示為平方毫米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“中華人民共和國道路交通管理條例”規(guī)定:小汽車在城街路上行駛速度不得超過70km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路對面車速檢測儀A處的正前方30m的C處,過了2s后,測得小汽車與車速檢測儀間距離為50m,這輛小汽車超速了嗎?(參考數(shù)據(jù)轉(zhuǎn)換:1m/s=3.6km/h)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與x軸交于A(6,0)、B(,0)兩點,與y軸交于點C,過拋物線上點M(1,3)作MN⊥x軸于點N,連接OM.
(1)求此拋物線的解析式;
(2)如圖1,將△OMN沿x軸向右平移t個單位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′與直線AC分別交于點E、F.
①當(dāng)點F為M′O′的中點時,求t的值;
②如圖2,若直線M′N′與拋物線相交于點G,過點G作GH∥M′O′交AC于點H,試確定線段EH是否存在最大值?若存在,求出它的最大值及此時t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1和2,在△ABC中,AB=13,BC=14,BH=5.
探究:如圖1,AH⊥BC于點H,則AH= ,AC= ,△ABC的面積 ;
拓展:如圖2,點D在AC上(可與點A,C重合),分別過點A.C作直線BD的垂線,垂足為E,F(xiàn),設(shè)BD=x,AE=m,CF=n(當(dāng)點D與點A重合時,我們認(rèn)為)
(1)用含x,m,n的代數(shù)式表示及;
(2)求(m+n)與x的函數(shù)關(guān)系式,并求(m+n)的最大值和最小值;
(3)對給定的一個x值,有時只能確定唯一的點D,直接寫出這樣的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為a的正方形中挖去一個邊長為b的小正方形(a>b)(如圖甲),把余下的部分拼成一個矩形(如圖乙),根據(jù)兩個圖形中陰影部分的面積相等,可以驗證( )
A. (a+b)2=a2+2ab+b2 B. (a﹣b)2=a2-2ab+b2
C. (a+b)(a﹣b)= a2﹣b2 D. (a+2b)(a﹣b)=a2+ab﹣2b2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com