【題目】在矩形ABCD中,AD=2AB=4,E是AD的中點,一塊足夠大的三角板的直角頂點與點E重合,將三角板繞點E旋轉,三角板的兩直角邊分別交AB,BC(或它們的延長線)于點M,N,設∠AEM=α(0°<α<90°),給出下列四個結論: ①AM=CN;
②∠AME=∠BNE;
③BN﹣AM=2;
④S△EMN= .
上述結論中正確的個數(shù)是( )
A.1
B.2
C.3
D.4
【答案】C
【解析】解:①如圖,
在矩形ABCD中,AD=2AB,E是AD的中點,
作EF⊥BC于點F,則有AB=AE=EF=FC,
∵∠AEM+∠DEN=90°,∠FEN+∠DEN=90°,
∴∠AEM=∠FEN,
在Rt△AME和Rt△FNE中,
,
∴Rt△AME≌Rt△FNE,
∴AM=FN,
∴MB=CN.
∵AM不一定等于CN,
∴①錯誤,
②由①有Rt△AME≌Rt△FNE,
∴∠AME=∠BNE,
∴②正確,
③由①得,BM=CN,
∵AD=2AB=4,
∴BC=4,AB=2
∴BN﹣AM=BC﹣CN﹣AM=BC﹣BM﹣AM=BC﹣(BM+AM)=BC﹣AB=4﹣2=2,
∴③正確,
④方法一:如圖,
由①得,CN=CF﹣FN=2﹣AM,AE= AD=2,AM=FN
∵tanα= ,
∴AM=AEtanα
∵cosα= = ,
∴cos2α= ,
∴ =1+ =1+( )2=1+tan2α,
∴ =2(1+tan2α)
∴S△EMN=S四邊形ABNE﹣S△AME﹣S△MBN
= (AE+BN)×AB﹣ AE×AM﹣ BN×BM
= (AE+BC﹣CN)×2﹣ AE×AM﹣ (BC﹣CN)×CN
= (AE+BC﹣CF+FN)×2﹣ AE×AM﹣ (BC﹣2+AM)(2﹣AM)
=AE+BC﹣CF+AM﹣ AE×AM﹣ (2+AM)(2﹣AM)
=AE+AM﹣ AE×AM+ AM2
=AE+AEtanα﹣ AE2tanα+ AE2tan2α
=2+2tanα﹣2tanα+2tan2α
=2(1+tan2α)
= .
方法二,∵E是AD的中點,
∴AE= AD=2,
在Rt△AEM,cosα= ,
∴EM= = ,
由(1)知,Rt△AME≌Rt△FNE,
∴EM=EN,∠AEM=∠FEN,
∵∠AEF=90°,
∴∠MEN=90°,
∴△MEN是等腰直角三角形,
∴S△MEN= EM2= .
∴④正確.
故選C.
【考點精析】掌握旋轉的性質是解答本題的根本,需要知道①旋轉后對應的線段長短不變,旋轉角度大小不變;②旋轉后對應的點到旋轉到旋轉中心的距離不變;③旋轉后物體或圖形不變,只是位置變了.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,AB=DC,對角線AC、BD交于點O,AC⊥BD,E、F、G、H分別是AB、BC、CD、DA的中點.
(1)求證:四邊形EFGH是正方形;
(2)若AD=2,BC=4,求四邊形EFGH的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D在△ABC的邊AC上,要判定△ADB與△ABC相似,添加一個條件,不正確的是( )
A.∠ABD=∠C
B.∠ADB=∠ABC
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,利用一面墻(墻的長度不超過45m),用80m長的籬笆圍一個矩形場地.
(1)怎樣圍才能使矩形場地的面積為750m2?
(2)能否使所圍矩形場地的面積為810m2 , 為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的三個頂點的坐標分別為A(﹣6,0)、B(﹣2,3)、
C(﹣1,0).
(1)請直接寫出與點B關于坐標原點O的對稱點B1的坐標;
(2)將△ABC繞坐標原點O逆時針旋轉90°.畫出對應的△A′B′C′圖形,直接寫出點A的對應點A′的坐標;
(3)若四邊形A′B′C′D′為平行四邊形,請直接寫出第四個頂點D′的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在正方形ABCD中,點E,F(xiàn)分別是邊BC,AB上的點,且CE=BF.連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.
(1)請判斷:FG與CE的數(shù)量關系是 , 位置關系是;
(2)如圖2,若點E,F(xiàn)分別是邊CB,BA延長線上的點,其它條件不變,(1)中結論是否仍然成立?請作出判斷并給予證明;
(3)如圖3,若點E,F(xiàn)分別是邊BC,AB延長線上的點,其它條件不變,(1)中結論是否仍然成立?請直接寫出你的判斷.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為加強中小學生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識競賽,為獎勵在競賽中表現(xiàn)優(yōu)異的班級,學校準備從體育用品商場一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),購買1個足球和1個籃球共需159元;足球單價是籃球單價的2倍少9元.
(1)求足球和籃球的單價各是多少元?
(2)根據(jù)學校實際情況,需一次性購買足球和籃球共20個,但要求購買足球和籃球的總費用不超過1550元,學校最多可以購買多少個足球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E,F(xiàn)是平行四邊形ABCD的對角線AC上的點,CE=AF.請你猜想:BE與DF有怎樣的位置關系和數(shù)量關系?并對你的猜想加以證明:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com