【題目】如圖,線段AB經(jīng)過圓心O,交⊙O于點(diǎn)A、C,點(diǎn)D⊙O上,連接AD,BD,∠A=∠B=30°.

證明:(1)BD⊙O的切線

(2)如果BD=2OC的長

【答案】1)見解析 (2

【解析】

試題(1)連接OD,根據(jù)∠A∠B的度數(shù)求出∠ADB的度數(shù),然后根據(jù)OA=OD求出∠ODA的度數(shù),從而可以得到∠ODB的度數(shù);(2)根據(jù)△BOD為直角三角形和BD的長度,求出OD的長度,然后OC=OD求出OC的長度.

試題解析:(1)連接OD ∵OA=OD ∴∠ODA=∠A=30°

∵∠A=∠B=30° ∴∠ADB=180°30°30°=120° ∴∠ODB=120°30°=90°

∴BD⊙O的切線.

2∵∠BDO=90° ∠B=30° BD=2 ∴OD=∴OC=OD=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形 ABCD 是正方形,點(diǎn) E BC邊上任意一點(diǎn), AEF 90°,且EF 交正方形外角的平分線 CF 于點(diǎn) F.求證:AE=EF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,AB為直徑,AC為弦.過BC延長線上一點(diǎn)G,作GDAO于點(diǎn)D,交AC于點(diǎn)E,交⊙O于點(diǎn)F,MGE的中點(diǎn),連接CF,CM.

(1)判斷CM與⊙O的位置關(guān)系,并說明理由;

(2)若∠ECF=2A,CM=6,CF=4,求MF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的頂點(diǎn)Ax軸負(fù)半軸上,頂點(diǎn)Cx軸正半軸上,頂點(diǎn)B在第一象限,線段OA,OC的長是一元二次方程x2-12x+36=0的兩根,BC=4,∠BAC=45°.

(1)直接寫出點(diǎn)A的坐標(biāo)________點(diǎn) C的坐標(biāo)________;

(2)若反比例函數(shù)y=的圖象經(jīng)過點(diǎn)B,求k的值;

(3)如圖過點(diǎn)BBDy軸于點(diǎn)D;在y軸上是否存在點(diǎn)P,使以P,B,D為頂點(diǎn)的三角形與以P, O,A為頂點(diǎn)的三角形相似?若存在,直接寫出滿足條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC和△DBE是繞點(diǎn)B旋轉(zhuǎn)的兩個(gè)相似三角形,其中∠ABC與∠DBE、∠A與∠D為對應(yīng)角.

(1)如圖①,若△ABC和△DBE分別是以∠ABC與∠DBE為頂角的等腰直角三角形,且兩三角形旋轉(zhuǎn)到使點(diǎn)B、CD在同一條直線上的位置時(shí),請直接寫出線段AD與線段EC的關(guān)系;

(2)若△ABC和△DBE為含有30°角的直角三角形,且兩個(gè)三角形旋轉(zhuǎn)到如圖②的位置時(shí),試確定線段AD與線段EC的關(guān)系,并說明理由;

(3)若△ABC和△DBE為如圖③的兩個(gè)三角形,且∠ACBα,∠BDEβ,在繞點(diǎn)B旋轉(zhuǎn)的過程中,直線ADEC夾角的度數(shù)是否改變?若不改變,直接用含α、β的式子表示夾角的度數(shù);若改變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑AB10cm,弦BC5cmD、E分別是∠ACB的平分線與⊙OAB的交點(diǎn),PAB延長線上一點(diǎn),且PC=PE

1)求AC、AD的長;

2)試判斷直線PC⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,直線l經(jīng)過A(4,0)和B(0,4)兩點(diǎn),拋物線y=a(x﹣h)2的頂點(diǎn)為P(1,0),直線l與拋物線的交點(diǎn)為M.

(1)求直線l的函數(shù)解析式;

(2)若S△AMP=3,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E是△ABC的內(nèi)心,AE的延長線和△ABC的外接圓相交于點(diǎn)D.AD與BC相交于點(diǎn)F,連結(jié)BE,DC,已知EF=2,CD=5,則AD=______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)P為∠MON的平分線上一點(diǎn),以P為頂點(diǎn)的角的兩邊分別與射線OM,ON交于A,B兩點(diǎn),如果∠APB繞點(diǎn)P旋轉(zhuǎn)時(shí)始終滿足OAOB=OP2,我們就把∠APB叫做∠MON的智慧角.

(1)如圖2,已知∠MON=90°,點(diǎn)P為∠MON的平分線上一點(diǎn),以P為頂點(diǎn)的角的兩邊分別與射線OM,ON交于A,B兩點(diǎn),且∠APB=135°.求證:∠APB是∠MON的智慧角.

(2)如圖1,已知∠MON=α(0°<α<90°),OP=2.若∠APB是∠MON的智慧角,連結(jié)AB,用含α的式子分別表示∠APB的度數(shù)和△AOB的面積.

(3)如圖3,C是函數(shù)y=(x>0)圖象上的一個(gè)動(dòng)點(diǎn),過C的直線CD分別交x軸和y軸于A,B兩點(diǎn),且滿足BC=2CA,請求出∠AOB的智慧角∠APB的頂點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案