【題目】二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y= x的圖象如圖所示,則方程ax2+(b﹣ )x+c=0(a≠0)的兩根之和( )
A.大于0
B.等于0
C.小于0
D.不能確定
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=12,BC=5,將△ABC繞AB上的點O順時針旋轉90°,得到△A'B'C',連結BC'.若BC'∥A'B',則OB的值為( )
A. B. 5C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電器商城銷售、兩種型號的電風扇,進價分別為元、元,下表是近兩周的銷售情況:
銷售時段 | 銷售型號 | 銷售收入 | |
種型號 | 種型號 | ||
第一周 | 臺 | 臺 | 元 |
第二周 | 臺 | 臺 | 元 |
(1)求、兩種型號的電風扇的銷售單價;
(2)若商城準備用不多于元的金額再采購這兩種型號的電風扇共臺,求種型號的電風扇最多能采購多少臺?
(3)在(2)的條件下商城銷售完這臺電風能否實現(xiàn)利潤超過元的目標?若能,請給出相應的采購方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將兩張寬度相等的矩形紙片疊放在一起得到如圖所示的四邊形ABCD.
(1)求證:四邊形ABCD是菱形;
(2)如果兩張矩形紙片的長都是8,寬都是2.那么△DCB的面積是否存在最大值或最小值?如果存在,請求出來;如果不存在,請簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=CD,E、F、G、H分別為AD、BC、BD、AC的中點,順次連接E、G、F、H.
(1)猜想四邊形EGFH是什么特殊的四邊形,并說明理由;
(2)當∠ABC與∠DCB滿足什么關系時,四邊形EGFH為正方形,并說明理由;
(3)猜想:∠GFH、∠ABC、∠DCB三個角之間的關系.直接寫出結果____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市三景區(qū)是人們節(jié)假日游玩的熱點景區(qū),某學校對九(1)班學生“五一”小長假隨父母到這三個景區(qū)游玩的計劃做了全面調查,調查分四個類別,A:三個景區(qū);B:游兩個景區(qū);C:游一個景區(qū);D:不到這三個景區(qū)游玩,現(xiàn)根據(jù)調查結果繪制了不完全的條形統(tǒng)計圖和扇形統(tǒng)計圖如下:
請結合圖中信息解答下列問題:
(1)九(1)班現(xiàn)有學生人,在扇形統(tǒng)計圖中表示“B類別”的扇形的圓心角的度數(shù)為;
(2)請將條形統(tǒng)計圖補充完整;
(3)若該校九年級有1000名學生,求計劃“五一”小長假隨父母到這三個景區(qū)游玩的學生多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,AB=AD,BC=CD.
(1)如圖1,請連接AC,BD,求證:AC垂直平分BD;
(2)如圖2,若∠BCD=60°,∠ABC=90°,E,F(xiàn)分別為邊BC,CD上的動點,且∠EAF=60°,AE,AF分別與BD交于G,H,求證:△AGH∽△AFE;
(3)如圖3,在(2)的條件下,若 EF⊥CD,直接寫出 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,OE是∠AOD的平分線,若∠AOC=60°,OF⊥OE.
(1)判斷OF把∠AOC所分成的兩個角的大小關系并證明你的結論;
(2)求∠BOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結論:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實數(shù)).
其中正確的結論有( )
A.2個
B.3個
C.4個
D.5個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com