【題目】一個(gè)涵洞成拋物線形,它的截面如圖,現(xiàn)測(cè)得:當(dāng)水面寬AB=1.6 m時(shí),涵洞頂點(diǎn)與水面的距離為2.4 m,離開水面1.5 m處是涵洞寬ED.

1)求拋物線的解析式;

2)求ED的長(zhǎng).

【答案】(1)y=-x2 (2)

【解析】試題分析:(1)根據(jù)這個(gè)函數(shù)過(guò)原點(diǎn),那么可設(shè)為y=kx2,有COAB的長(zhǎng),那么點(diǎn)A的坐標(biāo)應(yīng)該是(﹣0.8﹣2.4),利用待定系數(shù)法即可解決;

2)根據(jù)題意令y=﹣2.4﹣1.5),求出x的值即可得.

試題解析:解:(1)設(shè)為y=kx2,由COAB的長(zhǎng),那么A的坐標(biāo)應(yīng)該是(﹣0.8,2.4),將其代入函數(shù)中得:﹣2.4=0.8×0.8×k,解得k=

那么函數(shù)的解析式就是:y=x2;

2)根據(jù)題意,當(dāng)y=0.9時(shí),﹣x2=0.9,解得:x,ED=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC與△ABC′在平面直角坐標(biāo)系中的位置如圖.

1)分別寫出下列各點(diǎn)的坐標(biāo): A   ;B   C   ;

2)若點(diǎn)Pab)是△ABC內(nèi)部一點(diǎn),則平移后△ABC′內(nèi)的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)為   ;

3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠BAC=90°,ADBC于點(diǎn)D,點(diǎn)OAC邊上一點(diǎn),連接BOADF,OEOBBC邊于點(diǎn)E

(1)求證:△ABF∽△COE;

(2)當(dāng)O為AC邊中點(diǎn), 時(shí),如圖2,求的值;

(3)當(dāng)O為AC邊中點(diǎn), 時(shí),請(qǐng)直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)OAE平分BAD,分別交BCBD于點(diǎn)E,P,連接OE,ADC=60°,則下列結(jié)論:①∠CAD=30°②,正確的個(gè)數(shù)是______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCDRt△ABE∠AEB90°,將△ABE繞點(diǎn)O旋轉(zhuǎn)180°得到△CDF

1)在圖中畫出點(diǎn)O和△CDF;

2)若∠ABC130°,直接寫出∠AEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一個(gè)內(nèi)角為60°的菱形 ABCD中,AB2,點(diǎn)P以每秒1cm的速度從點(diǎn)A出發(fā),沿AD→DC的路徑運(yùn)動(dòng),到點(diǎn)C停止,過(guò)點(diǎn)P PQBD,PQ 與邊AD(或邊CD)交于點(diǎn)Q,△ABQ的面積ycm2)與點(diǎn)P 的運(yùn)動(dòng)時(shí)間x(秒)的函數(shù)圖象大致是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分8分)已知:如圖1,線段AB、CD相交于點(diǎn)O,連接ADCB,我們把形如圖1的圖形稱之為“8字形”.試解答下列問(wèn)題:

(1)在圖1中,請(qǐng)直接寫出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系:   ;

(2)仔細(xì)觀察,在圖2中“8字形”的個(gè)數(shù):   個(gè);

(3)在圖2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分線APCP相交于點(diǎn)P,并且與CD、AB分別相交于M、N.利用(1)的結(jié)論,可求得∠P的度數(shù)是   ;

(4)如果圖2中∠D和∠B為任意角時(shí),其他條件不變,請(qǐng)直接寫出∠P與∠D、∠B之間存在的數(shù)量關(guān)系是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,AB//EF,∠2=21

1)證明∠FEC=∠FCE;

2)如圖2MAC上一點(diǎn),NFE延長(zhǎng)線上一點(diǎn),且∠FNM=∠FMN,則∠NMC與∠CFM有何數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各式,能用平方差公式計(jì)算的是( 。

A.2a+b)(2baB.1)(﹣1

C.2a3b)(﹣2a+3bD.(﹣a2b)(﹣a+2b

查看答案和解析>>

同步練習(xí)冊(cè)答案