【題目】某校學生會發(fā)現(xiàn)同學們就餐時剩余飯菜較多,浪費嚴重,于是準備在校內(nèi)倡導“光盤行動”,讓同學們珍惜糧食,為了讓同學們理解這次活動的重要性,校學生會在某天午餐后,隨機調(diào)查了部分同學這餐飯菜的剩余情況,并將結果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖.

1)這次被調(diào)查的同學共有   人;

2)補全條形統(tǒng)計圖,并在圖上標明相應的數(shù)據(jù);

3)校學生會通過數(shù)據(jù)分析,估計這次被調(diào)查的所有學生一餐浪費的食物可以供50人食用一餐.據(jù)此估算,該校18000名學生一餐浪費的食物可供多少人食用一餐.

【答案】(1)1000,(2)答案見解析;(3)900.

【解析】

1)結合不剩同學的個數(shù)和比例,計算總體個數(shù),即可.(2)結合總體個數(shù),計算剩少數(shù)的個數(shù),補全條形圖,即可.(3)計算一餐浪費食物的比例,乘以總體個數(shù),即可.

解:(1)這次被調(diào)查的學生共有600÷60%1000人,

故答案為1000;

2)剩少量的人數(shù)為1000﹣(600+150+50)=200人,

補全條形圖如下:

3

答:估計該校18000名學生一餐浪費的食物可供900人食用一餐.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線經(jīng)過A-1,0),B30)與點C0,3),連接BC,點P是直線BC是上方的一個動點(且不與B,C重合).

1)求拋物線的解析式;

2)求PBC的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:△ABC是等邊三角形,點D是△ABC(包含邊界)平面內(nèi)一點,連接CD,將線段CDC逆時針旋轉(zhuǎn)60°得到線段CE,連接BE,DEAD,并延長ADBE于點P

1)觀察填空:當點D在圖1所示的位置時,填空:

①與△ACD全等的三角形是______

②∠APB的度數(shù)為______

2)猜想證明:在圖1中,猜想線段PD,PE,PC之間有什么數(shù)量關系?并證明你的猜想.

3)拓展應用:如圖2,當△ABC邊長為4,AD=2時,請直接寫出線段CE的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx﹣2(a≠0)的圖象的頂點在第三象限,且過點(1,0),設t=a﹣b﹣2,則t值的變化范圍是(  )

A. ﹣2<t<0 B. ﹣3<t<0 C. ﹣4<t<﹣2 D. ﹣4<t<0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是二次函數(shù)圖象的一部分,其對稱軸是,且過點,下列說法:;;,是拋物線上兩點,則,其中正確的有  

A. 1

B. 2

C. 3

D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某同學練習推鉛球,鉛球推出后在空中飛行的軌跡是一條拋物線,鉛球在離地面1米高的A處推出,達到最高點B時的高度是2.6米,推出的水平距離是4米,鉛球在地面上點C處著地

1)根據(jù)如圖所示的直角坐標系求拋物線的解析式;

2)這個同學推出的鉛球有多遠?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形ABCD中,AB6cm,BC8cm,如果點E由點B出發(fā)沿BC方向向點C勻速運動,同時點F由點D出發(fā)沿DA方向向點A勻速運動,它們的速度分別為每秒2cm1cmFQBC,分別交AC、BC于點PQ,設運動時間為t秒(0t4).

1)連接EF,若運動時間t秒時,求證:△EQF是等腰直角三角形;

2)連接EP,當△EPC的面積為3cm2時,求t的值;

3)在運動過程中,當t取何值時,△EPQ與△ADC相似.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l1的解析式為y=﹣3x+3,且l1x軸交于點D,直線l2經(jīng)過點A、B,直線l1l2交于點C

1)求直線l2的解析表達式;

2)求ADC的面積;

3)在直線l2上存在異于點C的另一點P,使得ADPADC的面積相等,請求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,正方形ABCD中,BE=EF=FC,CG=2GD,BG分別交AE,AFM,N,下列結論:①AFBG;②BN=NF;③;④S四邊形CGNF=S四邊形ANGD.其中正確的結論的序號是(  )

A.①③B.②④C.①②D.③④

查看答案和解析>>

同步練習冊答案