【題目】如圖1和2,四邊形ABCD是菱形,點(diǎn)P是對(duì)角線AC上一點(diǎn),以點(diǎn)P為圓心,PB為半徑的弧,交BC的延長(zhǎng)線于點(diǎn)F,連接PF,PD,PB.
(1)如圖1,點(diǎn)P是AC的中點(diǎn),請(qǐng)寫(xiě)出PF和PD的數(shù)量關(guān)系:;
(2)如圖2,點(diǎn)P不是AC的中點(diǎn),
①求證:PF=PD.
②若∠ABC=40°,直接寫(xiě)出∠DPF的度數(shù).
【答案】
(1)PF=PD
(2)
解:①證明:
∵四邊形ABCD是菱形,
∴AB=AD,∠BAC=∠DAC.
在△ABP和△ADP中,
,
∴△ABP≌△ADP(SAS),
∴PB=PD,
又∵PB=PF,
∴PF=PD.
②解:以P為圓心,PB為半徑作圓P,則點(diǎn)B、F、D都在圓P上,連接BD.
由圓周角定理,可得∠DPF=2∠DBF,
又∵四邊形ABCD是菱形,
∴∠ABC=2∠DBF,
∴∠DPF=∠ABC=40°.
【解析】(1)先根據(jù)菱形的對(duì)角線互相平分得出PB=PD,而由已知有PB=PF,則PF=PD;(2)①先由菱形的性質(zhì)得出AB=AD,∠BAC=∠DAC,再由SAS證明△ABP≌△ADP,得出PB=PD,又PB=PF,則PF=PD;
②由于PB=PD=PF,以P為圓心,PB為半徑作圓P,則點(diǎn)B、F、D都在圓P上,連接BD,則∠DPF=2∠DBF=∠ABC=40°.
【考點(diǎn)精析】本題主要考查了菱形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在△PAB的邊PA、PB上分別取點(diǎn)C、D,連接CD使CD∥AB.將△PCD繞點(diǎn)P按逆時(shí)針?lè)较蛐D(zhuǎn)得到△PC′D′(∠APC′<∠APB),連接AC′、BD′.
(1)如圖1, 若∠APB=90°,PA=PB,求證:AC′=BD′;AC′⊥BD′.
(2)在圖1中,連接AD′、BC′,分別取AB、AD′、C′D′、BC′的中點(diǎn)E、F、G、H,順次連接E、F、G、H得到四邊形EFGH.請(qǐng)判斷四邊形EFGH的形狀,并說(shuō)明理由.
(3)①如圖2, 若改變(1)中∠APB的大小,使0°<∠APB<90°,其他條件不變,重復(fù)(2)中操作.請(qǐng)你直接判斷四邊形EFGH的形狀.
②如圖3,若改變(1)中PA、PB的大小關(guān)系,使PA<PB,其他條件不變,重復(fù)(2)中操作,請(qǐng)你直接判斷是四邊形EFGH的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙每個(gè)小方格是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,在平面直角坐標(biāo)系中,點(diǎn)A(1,0),B(5,0),C(a,b)D(1,4).
(1)描出A、B、C、D四點(diǎn)的位置.如圖,則a= ;b= ;
(2)四邊形ABCD的面積是 ;(直接寫(xiě)出結(jié)果)
(3)把四邊形ABCD向左平移6個(gè)單位,再向下平移1個(gè)單位得到四邊形A'B'C'D',在圖中畫(huà)出四邊形A'B'C'D',并寫(xiě)出A'B'C'D'的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位計(jì)劃用3天時(shí)間進(jìn)行設(shè)備檢修,安排小王,小李,小趙三位工程師各帶班一天,帶班順序是隨機(jī)確定的.
(1)請(qǐng)你寫(xiě)出三天帶班順序的所有可能的結(jié)果;
(2)求小李和小趙恰好相鄰的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,折線AC﹣BC是一條公路的示意圖,AC=8km,甲騎摩托車(chē)從A地沿這條公路到B地,速度為40km/h,乙騎自行車(chē)從C地到B地,速度為10km/h,兩人同時(shí)出發(fā),結(jié)果甲比乙早到6分鐘.
(1)求這條公路的長(zhǎng);
(2)設(shè)甲乙出發(fā)的時(shí)間為t小時(shí),求甲沒(méi)有超過(guò)乙時(shí)t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)D是 AB邊上一點(diǎn),連接CD,將線段CD繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)60°后得到CE,連接AE.求證:AE∥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD為正方形,AB=,點(diǎn)E為對(duì)角線AC上一動(dòng)點(diǎn),連接DE,過(guò)點(diǎn)E作EF⊥DE.交射線BC于點(diǎn)F,以DE、EF為鄰邊作矩形DEFG,連接CG.
①求證:矩形DEFG是正方形;
②探究:CE+CG的值是否為定值?若是,請(qǐng)求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為4,點(diǎn)E、F分別在邊AB、BC上,且AE=BF=1,CE、DF交于點(diǎn)O.下列結(jié)論:①∠DOC=90°,②OC=OE,③tan∠OCD= ,④S△ODC=S四邊形BEOF中,正確的有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com