【題目】如圖,在△ABC中,AB10mBC40m,∠C90°,點P從點A開始沿邊AC邊向點C2m/s的速度勻速移動,同時另一點QC點開始以3m/s的速度沿著邊CB勻速移動,幾秒時,△PCQ的面積等于432m2?

【答案】9秒時,△PCQ的面積等于432m2

【解析】

根據(jù)勾股定理求出AC的長,然后根據(jù)運動速度,設(shè)x秒后,PCQ的面積等于432m2,從而列出方程進(jìn)一步求解即可。

在△ABC中,AB10m,BC40m,∠C90°,

AC50m

設(shè)x秒時,△PCQ的面積等于432m2,

依題意,得:×3x×(502x)=432,

解得:x19,x216

3x40,

x13

x9

答:9秒時,△PCQ的面積等于432m2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將正方形OABC繞點O逆時針旋轉(zhuǎn)45°后得到正方形,依此方式,繞點O連續(xù)旋轉(zhuǎn)2018次得到正方形,如果點A的坐標(biāo)為(1,0),那么點的坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知圓0的直徑AB垂直于弦CD于點E,CG是圓O的切線交AB的延長線于點G,連接CO并延長交AD于點F,且CFAD.

1)試問:CG//AD嗎?說明理由:

2)證明:點EOB的中點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果一元二次方程滿足,那么我們稱這個方程為鳳凰方程.已知鳳凰方程,且有兩個相等的實數(shù)根,則下列結(jié)論正確的是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx+ca0)的對稱軸為直線x=﹣1,與x軸的一個交點在(﹣30和(﹣2,0)之間,其部分圖象如圖,則下列結(jié)論:2ab04acb20點(x1,y1),(x2,y2)在拋物線上若x1x2,則y1y2;a+b+c0.正確結(jié)論的個數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠ACB=90°,AC=3BC=4.以點C為圓心,r為半徑的圓與邊AB(邊AB為線段)僅有一個公共點,則r的值為( 。

A.rB.r=3r=4C.r≤4 D.r=3r≤4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ACB內(nèi)接于圓O,AB為直徑,CDAB與點DE為圓外一點,EOAB,與BC交于點G,與圓O交于點F,連接EC,且EG=EC

1)求證:EC是圓O的切線;

2)當(dāng)∠ABC=22.5°時,連接CF

①求證:AC=CF;

②若AD=1,求線段FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某天貓店銷售某種規(guī)格學(xué)生軟式排球,成本為每個30元.以往銷售大數(shù)據(jù)分析表明:當(dāng)每只售價為40元時,平均每月售出600個;若售價每上漲1元,其月銷售量就減少20個,若售價每下降1元,其月銷售量就增加200個.

(1)若售價上漲m元,每月能售出   個排球(用m的代數(shù)式表示).

(2)為迎接雙十一,該天貓店在10月底備貨1300個該規(guī)格的排球,并決定整個11月份進(jìn)行降價促銷,問售價定為多少元時,能使11月份這種規(guī)格排球獲利恰好為8400

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,把矩形OCBA繞點C順時針旋轉(zhuǎn)α,得到矩形FCDE,設(shè)FCAB交于點H,A(0,4),C(6,0).

(1)當(dāng)α=45°時,求H點的坐標(biāo).

(2)當(dāng)α=60°,ΔCBD是什么特殊的三角形?說明理由.

(3)當(dāng)AH=HC,求直線HC的解析式.

查看答案和解析>>

同步練習(xí)冊答案