【題目】如圖1,∠MON=90°,點A,B分別在射線OM、ON上.將射線OA繞點O沿順時針方向以每秒9°的速度旋轉,同時射線OB繞點O沿順時針方向以每秒3°的速度旋轉(如圖2).設旋轉時間為t(0≤t≤40,單位秒).
(1)當t=8時,∠AOB= °;
(2)在旋轉過程中,當∠AOB=36°時,求t的值.
(3)在旋轉過程中,當ON、OA、OB三條射線中的一條恰好平分另外兩條射線組成的角(指大于0°而不超過180°的角)時,請求出t的值.
【答案】(1)42;(2)或;(3)t=7.5或12或30.
【解析】
(1)當t=8時,OA轉過的角度為8×9°=72°,OB轉過的角度為8×3°=24°,
再計算∠AOB的值即可;
(2)根據(jù)題意列出方程,在解方程即可的解;
(3)當ON、OA、OB三條射線中的一條恰好平分另外兩條射線組成的角(指大于0°而不超過180°的角)時,有3種情況:ON平分∠AOB、OA平分∠BON、OB平分∠AON,分別根據(jù)每種情況列方程求解即可.
(1) 當t=8時,OA轉過的角度為8×9°=72°,OB轉過的角度為8×3°=24°,
∴∠AOB=∠AON+∠NOB=90°-72°+24°=42°;
(2)根據(jù)題意可得,,
解得或;
(3) 當ON、OA、OB三條射線中的一條恰好平分另外兩條射線組成的角(指大于0°而不超過180°的角)時,有以下3種情形:
①當ON平分∠AOB時,3t=90-9t,∴t=7.5;
②當OA平分∠BON時,3t=2(9t-90),∴t=12;
③當OB平分∠AON時,9t-90=2×3t,∴t=30 ;
綜上,t的值為7.5、12或30.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與兩軸分別交于A、B、C三點,已知點A(一3,O),B(1,0).點P在第二象限內的拋物線上運動,作PD上軸子點D,交直線AC于點E.
(1)
(2)過點P作PF⊥AC于點F.求當△PEF的周長取最大值時點P的坐標.
(3)連接AP,并以AP為邊作等腰直角△APQ,當頂點Q恰好落在拋物線的對稱軸上時,求對應的P點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:∠BAC的平分線與BC的垂直平分線DG相交于點D,DE⊥AB,DF⊥AC,垂足分別為E、F,AB=6,AC=3,則BE=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】幾年前我國曾經(jīng)流行有一種叫“二十四點”的數(shù)學趣味算題,方法是給出1~13之間的自然數(shù),從中任取四個,將這四個數(shù)(四個數(shù)都只能用一次)進行“+”“-”“×”“÷”運算,可加括號使其結果等于24.
例如:對1,2,3,4可運算(1+2+3)×4=24,也可以寫成4×(1+2+3)=24,但視作相同的方法.
現(xiàn)有鄭、付兩同學的手中分別握著四張撲克牌(見下圖);若紅桃、方塊上的點數(shù)記為負數(shù),黑桃、梅花上的點數(shù)記為正數(shù).
請你對鄭、付兩同學的撲克牌的按要求進行記數(shù),并按前面“二十四點”運算方式對鄭、付兩同學的記數(shù)分別進行列式計算,使其運算結果均為24.(分別盡可能提供多種算法)
依次記為:______ 、______ 、______ 、______
依次記為:______ 、______ 、______ 、______ .
(1)幫助鄭同學列式計算:______
(2)幫助付同學列式計算:______ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是⊙O的內接三角形,CE⊥AB于點E,BD⊥AC于點D,BD、CE相交于點F,連結ED.
(1)若∠ABC=45°,證明AE=EF;
(2)求證:△AED∽△ACB;
(3)過點A的直線AM∥ED, AM是⊙O的切線嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把下列各數(shù)填入相應集合的括號內.
+6.5,,0.5,0,-3.2,13,-9,,-1,-3.6
(1)正數(shù)集合:{ …};
(2)整數(shù)集合:{ …};
(3)非負數(shù)集合:{ …};
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,,分別表示小明步行與小剛騎車在同一路上行駛的路程S與時間t的關系.
(1)小剛出發(fā)時與小明相距________米.走了一段路后,自行車發(fā)生故障進行修理,所用的時間是________分鐘.
(2)求出小明行走的路程S與時間t的函數(shù)關系式.(寫出計算過程)
(3)請通過計算說明:若小剛的自行車不發(fā)生故障,保持出發(fā)時的速度前進,何時與小明相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=4,AD=3,折疊紙片使DA與對角線DB重合,點A落在點A′處,折痕為DE,則A′E的長是( )
A. 1 B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某興趣小組為了了解本校男生參加課外體育鍛煉情況,隨機抽取本校300名男生進行了問卷調查,統(tǒng)計整理并繪制了如下兩幅尚不完整的統(tǒng)計圖.
請根據(jù)以上信息解答下列問題:
(1)課外體育鍛煉情況扇形統(tǒng)計圖中,“經(jīng)常參加”所對應的圓心角的度數(shù)為________;
(2)請補全條形統(tǒng)計圖;
(3)該校共有1200名男生,請估計全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項目是籃球的人數(shù);
(4)小明認為“全校所有男生中,課外最喜歡參加的運動項目是乒乓球的人數(shù)約為1200×=108”,請你判斷這種說法是否正確,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com