【題目】如圖,在△ABC中,∠C=60°,點D、E分別為邊BC、AC上的點,連接DE,過點EEF∥BCABF,若BC=CE,CD=6,AE=8,∠EDB=2∠A,則BC=_____

【答案】16

【解析】

利用∠EDB=2A作輔助線,求出DE即可.

連接BE,延長BC使CG=AE,連接EG.因為BC=CE,ACB=60°,所以△BEC為等邊三角形,且EFBC,所以∠EBC=BEC=FEB=AEF=ACB=60°.因為EC=BE,CG=AE,AEB=ECG=120°,所以△AEB≌△GCE,所以,∠G=A.又因為∠EDB=2A,所以,∠G=DEG,所以,DE=DG=6+8=14.從點EEH垂直于BC,垂足為H,則,.根據(jù)勾股定理可知.求得EC=16,所以BC=16.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,CD的中點,連接BM,MN,BN.BAD=60°,AC平分∠BAD,AC=2,BN的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為更好的開展“春季趣味運動會”活動,隨機在各年級抽查了部分學生,了解他們最喜愛的趣味運動項目類型(跳繩、實心球、50m、拔河共四類),并將統(tǒng)計結果繪制成如下不完整的頻數(shù)分布表(如圖所示)

根據(jù)以上信息回答下列問題:

最喜愛的趣味運動項目類型頻數(shù)分布表:

 項目類型

 頻數(shù)

頻率 

 跳繩

 25

 a

 實心球

 20

 

 50m

 b

 0.4

 拔河

 0.15

(1)直接寫出a=   ,b=   ;

(2)將圖中的扇形統(tǒng)計圖補充完整(注明項目、百分比);

(3)若全校共有學生1200名,估計該校最喜愛50m和拔河的學生共約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,已知,,

1)在圖中畫出,的面積是_____________;

2)若點與點關于軸對稱,則點的坐標為_____________;

3)已知軸上一點,若的面積為,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,ABC=30°,CDE是等邊三角形,點D在邊AB上.

(1)如圖1,當點E在邊BC上時,求證DE=EB;

(2)如圖2,當點E在△ABC內(nèi)部時,猜想EDEB數(shù)量關系,并加以證明;

(3)如圖3,當點E在△ABC外部時,EHAB于點H,過點EGEAB,交線段AC的延長線于點G,AG=5CG,BH=3.求CG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(﹣1,5),B(﹣1,0),C(﹣43).

1)在圖中的點上標出相應字母A、BC,并求出ABC的面積;

2)在圖中作出ABC關于y軸的對稱圖形A1B1C1;

3)寫出點A1,B1C1的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的邊OAx軸重合,B的坐標為(﹣1,2),將矩形OABC繞平面內(nèi)一點P順時針旋轉90°,使A、C兩點恰好落在反比例函數(shù) 的圖象上,則旋轉中心P點的坐標是( 。

A. ,﹣ B. ,﹣ C. ,﹣ D. ,﹣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,線段BC=8,射線CGBC,A為射線CG上一點,已知FAABFA=AB,AE平分FAB,E點滿足∠EBA=ABC.

1)求證:ABEAFE.

2)證明:FDBC.

3)求BED的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】乘法公式的探究及應用.

數(shù)學活動課上,老師準備了若干個如圖1的三種紙片,A種紙片邊長為a的正方形,B種紙片是邊長為b的正方形,C種紙片長為a、寬為b的長方形,并用A種紙片一張,B種紙片一張,C種紙片兩張拼成如圖2的大正方形.

1)請用兩種不同的方法求圖2大正方形的面積.

方法1______;方法2______

2)觀察圖2,請你寫出下列三個代數(shù)式:(a+b2,a2+b2ab之間的等量關系.______;

3)類似的,請你用圖1中的三種紙片拼一個圖形驗證:

a+b)(a+2b=a2+3ab+2b2

4)根據(jù)(2)題中的等量關系,解決如下問題:

①已知:a+b=5,a2+b2=11,求ab的值;

②已知(x-20162+x-20182=34,求(x-20172的值.

查看答案和解析>>

同步練習冊答案