【題目】定義:數(shù)學(xué)活動(dòng)課上,陳老師給出如下定義:有一組對(duì)邊相等而另一組對(duì)邊不相等的凸四邊形叫做對(duì)等四邊形.
(1)理解:
如圖1,已知A、B、C在格點(diǎn)(小正方形的頂點(diǎn))上,請(qǐng)?jiān)诜礁駡D中畫(huà)出以格點(diǎn)為頂點(diǎn),AB、BC為邊的兩個(gè)對(duì)等四邊形ABCD;

(2)應(yīng)用:
如圖2,在Rt△PBC中,∠PCB=90°,BC=9,點(diǎn)A在BP邊上,且AB=13.AD⊥PC,CD=12,若PC上存在符合條件的點(diǎn)M,使四邊形ABCM為對(duì)等四邊形,求出CM的長(zhǎng).

【答案】
(1)解:如圖1,四邊形ABCD即為所求;


(2)

解:如圖2,

①當(dāng)CM=AB時(shí),CM=13;

②當(dāng)AM=BC=9時(shí),過(guò)A作AE⊥BC,則AE=CD=12,BE=5,

AD=CE=4,MD= = ,故CM=12+ 或CM=12﹣


【解析】(1)根據(jù)凸四邊形的定義畫(huà)出圖形即可;(2)分CM=AB與AM=BC兩種情況進(jìn)行討論即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識(shí),掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對(duì)勾股定理的逆定理的理解,了解如果三角形的三邊長(zhǎng)a、b、c有下面關(guān)系:a2+b2=c2,那么這個(gè)三角形是直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:3a22a3+a5--2a23÷a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是∠BAC內(nèi)的一點(diǎn),PE⊥AB,PF⊥AC,垂足分別為點(diǎn)E,F(xiàn),AE=AF. 求證:

(1)PE=PF;
(2)點(diǎn)P在∠BAC的角平分線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A,C分別在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(4,2),直線y=–x+3AB,BC于點(diǎn)MN,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)MN

(1)求反比例函數(shù)的解析式;

(2)若點(diǎn)Px軸上,且△OPM的面積與四邊形BMON的面積相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,□ABCD中,AC與BD相交于點(diǎn)O,AB=AC,延長(zhǎng)BC到點(diǎn)E,使CE=BC,連接AE,分別交BD、CD于點(diǎn)F、G.

(1) 求證:△ADB≌△CEA;

(2) 若BD=6,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=8,點(diǎn)E是射線CB上的一個(gè)動(dòng)點(diǎn),把△DCE沿DE折疊,點(diǎn)C的對(duì)應(yīng)點(diǎn)為C′.

(1)若點(diǎn)C′剛好落在對(duì)角線BD上時(shí),BC′=
(2)當(dāng)B C′∥DE時(shí),求CE的長(zhǎng);
(3)若點(diǎn)C′剛好落在線段AD的垂直平分線上時(shí),求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB是⊙O的一條弦,點(diǎn)C是優(yōu)弧上一點(diǎn).

(1)如圖①,若點(diǎn)P是弦AB與所圍成的弓形區(qū)域(不含弦AB與)內(nèi)一點(diǎn).求證:∠APB>∠ACB;

(2)如圖①,若點(diǎn)P在弦AB上方,且滿足∠APB=∠ACB,則點(diǎn)P在上嗎?為什么?

(3)請(qǐng)?jiān)趫D②中直接用陰影部分表示出在弦AB與所圍成的弓形區(qū)域內(nèi)滿足∠ACB<∠APB<2∠ACB的點(diǎn)P所在的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一科技小組進(jìn)行了機(jī)器人行走性能試驗(yàn),在試驗(yàn)場(chǎng)地有A、B、C三點(diǎn)順次在同一筆直的賽道上,甲、乙兩機(jī)器人分別從A、B兩點(diǎn)同時(shí)同向出發(fā),歷時(shí)7分鐘同時(shí)到達(dá)C點(diǎn),乙機(jī)器人始終以60米/分的速度行走,如圖是甲、乙兩機(jī)器人之間的距離y(米)與他們的行走時(shí)間x(分鐘)之間的函數(shù)圖象,請(qǐng)結(jié)合圖象,回答下列問(wèn)題:

(1)A、B兩點(diǎn)之間的距離是 米,甲機(jī)器人前2分鐘的速度為 米/分;

(2)若前3分鐘甲機(jī)器人的速度不變,求線段EF所在直線的函數(shù)解析式;

(3)若線段FG∥x軸,則此段時(shí)間,甲機(jī)器人的速度為 米/分;

(4)求A、C兩點(diǎn)之間的距離;

(5)直接寫(xiě)出兩機(jī)器人出發(fā)多長(zhǎng)時(shí)間相距28米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】﹣1﹣2×(﹣2)2的結(jié)果等于

查看答案和解析>>

同步練習(xí)冊(cè)答案