【題目】 如圖①所示,在△ABC中,AD是三角形的高,且AD=6cm,E是一個動點,由B向C移動,其速度與時間的變化關系如圖②所示,已知BC=8cm
(1)由圖②,E點運動的時間為______s,速度為______cm/s
(2)求當E點在運動過程中△ABE的面積y與運動時間x之間的關系式;
(3)當E點停止后,求△ABE的面積.
科目:初中數學 來源: 題型:
【題目】在△ABC中,AC=BC,射線AP交邊BC于點E,點D是射線AP上一點,連接BD、CD .
(1)如圖1,當∠CAB=45°,∠BDP=90°時,請直接寫出DA與DB、DC之間滿足的數量關系為: .
(2)如圖2,當∠CAB=30°,∠BDP=60°時,試猜想:DA與DB、DC之間具有怎樣的數量關系?并說明理由.
(3)如圖3,當∠ACB=,∠BDP=,若與之間滿足,則DA與DB、DC之間的數量關系為 .(請直接寫出結論)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知∠XOY=60°,點A在邊OX上,OA=2.過點A作AC⊥OY于點C,以AC為一邊在∠XOY內作等邊三角形ABC,點P是△ABC圍成的區(qū)域(包括各邊)內的一點,過點P作PD∥OY交OX于點D,作PE∥OX交OY于點E.設OD=a,OE=b,則a+2b的取值范圍是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8cm,BC=6cm,點P從點A出發(fā),以lcm/s的速度沿A→D→C方向勻速運動,同時點Q從點A出發(fā),以2cm/s的速度沿A→B→C方向勻速運動,當一個點到達點C時,另一個點也隨之停止.設運動時間為t(s),△APQ的面積為S(cm2),下列能大致反映S與t之間函數關系的圖象是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】汽車超速行駛是交通安全的重大隱患,為了有效降低交通事故的發(fā)生,許多道路在事故易發(fā)路段設置了區(qū)間測速如圖,學校附近有一條筆直的公路l,其間設有區(qū)間測速,所有車輛限速40千米/小時數學實踐活動小組設計了如下活動:在l上確定A,B兩點,并在AB路段進行區(qū)間測速.在l外取一點P,作PC⊥l,垂足為點C.測得PC=30米,∠APC=71°,∠BPC=35°.上午9時測得一汽車從點A到點B用時6秒,請你用所學的數學知識說明該車是否超速.(參考數據:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 在建設社會主義新農村過程中,某村委決定投資開發(fā)項目,現有6個項目可供選擇,各項目所需資金及預計年利潤如下表:
所需資金(億元) | 1 | 2 | 4 | 6 | 7 | 8 |
預計利潤(千萬元) | 0.2 | 0.35 | 0.55 | 0.7 | 0.9 | 1 |
(1)上表反映了哪兩個變量之間的關系?哪個是自變量?哪個是因變量?
(2)如果預計要獲得0.9千萬元的利潤,你可以怎樣投資項目?
(3)如果該村可以拿出10億元進行多個項目的投資,預計最大年利潤是多少?說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(問題解決)
一節(jié)數學課上,老師提出了這樣一個問題:如圖1,點P是正方形ABCD內一點,PA=1,PB=2,PC=3.你能求出∠APB的度數嗎?
小明通過觀察、分析、思考,形成了如下思路:
思路一:將△BPC繞點B逆時針旋轉90°,得到△BP′A,連接PP′,求出∠APB的度數;
思路二:將△APB繞點B順時針旋轉90°,得到△CP'B,連接PP′,求出∠APB的度數.
請參考小明的思路,任選一種寫出完整的解答過程.
(類比探究)
如圖2,若點P是正方形ABCD外一點,PA=3,PB=1,PC=,求∠APB的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司分兩次采購甲、乙兩種商品,具體情況如下:
商品 | 甲 | 乙 | 花費資金 |
次數 | |||
第一次采購件數 | 10件 | 15件 | 350元 |
第二次采購件數 | 15件 | 10件 | 375元 |
(1)求甲、乙商品每件各多少元?
(2)公司計劃第三次采購甲、乙兩種商品共31件,要求花費資金不超過475元,問最多可購買甲商品多少件?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,AB=6cm,∠B=∠C,BC=4cm,點D為AB的中點.若點P在線段BC上以1cm/s的速度由點B向點C運動,同時,點Q在線段CA上由點C向點A運動.
(1)若點Q的運動速度與點P的運動速度相等,經過1秒后,△BPD與△CQP是否全等,請說明理由;
(2)若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com