如圖,若△ABC和△ADE為等邊三角形,M,N分別EB,CD的中點,易證:CD=BE,△AMN是等邊三角形。

(1)當(dāng)把△ADE繞A點旋轉(zhuǎn)到圖2的位置時,CD=BE是否仍然成立?若成立請證明,若不成立請說明理由;
(2)當(dāng)△ADE繞A點旋轉(zhuǎn)到圖3的位置時,△AMN是否還是等邊三角形?若是,請給出證明,并求出當(dāng)AB=2AD時,△ADE與△ABC及△AMN的面積之比;若不是,請說明理由。
解:(1)CD=BE;理由如下
∵△ABC和△ADE為等邊三角形,
∴AB=AC,AE=AD,∠BAC=∠EAD=60°,
∵∠BAE=∠BAC-∠EAC=60°-∠EAC,
∠DAC=∠DAE-∠EAC=60°-∠EAC,
∴∠BAE=∠DAC,
∴△ABE≌△ACD,
∴CD=BE;
(2)△AMN是等邊三角形;理由如下:
∵△ABE≌△ACD,
∴∠ABE=∠ACD,
∵M(jìn)、N分別是BE、CD的中點,
∴BM=,
∵AB=AC,∠ABE=∠ACD,
∴△ABM≌△ACN,
∴AM=AN,∠MAB=∠NAC,
∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°,
∴△AMN是等邊三角形,
設(shè)AD=a,則AB=2a,
∵AD=AE=DE,AB=AC,
∴CE=DE,
∵△ADE為等邊三角形,
∴∠DEC=120°,∠ADE=60°,
∴∠EDC=∠ECD=30°,
∴∠ADC=90°,
∴在Rt△ADC中,AD=a,∠ACD=30°,
∴CD=,
∵N為DC中點,
,
,
∵△ADE,△ABC,△AMN為等邊三角形,
∴S△ADE∶S△ABC∶S△AMN=。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年湖南省常德市中考數(shù)學(xué)試題及答案 題型:059

如圖,若△ABC和△ADE為等邊三角形,M,N分別EB,CD的中點,易證:CD=BE,△AMN是等邊三角形.

(1)當(dāng)把△ADE繞A點旋轉(zhuǎn)到如圖的位置時,CD=BE是否仍然成立?若成立請證明,若不成立請說明理由;

(2)當(dāng)△ADE繞A點旋轉(zhuǎn)到如圖的位置時,△AMN是否還是等邊三角形?若是,請給出證明,并求出當(dāng)AB=2AD時,△ADE與△ABC及△AMN的面積之比;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011—2012學(xué)年陜西西安閻良區(qū)七年級下期期末數(shù)學(xué)試卷(帶解析) 題型:解答題

四邊形ABCD中,∠A=140°,∠D=80°.
(1)如圖①,若∠B=∠C,試求出∠C的度數(shù);
(2)如圖②,若∠ABC的角平分線交DC于點E,且BE∥AD,試求出∠C的度數(shù);
(3)如圖③,若∠ABC和∠BCD的角平分線交于點E,試求出∠BEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇鹽城市鹽都區(qū)九年級上學(xué)期期末統(tǒng)考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖1,若△ABC和△ADE為等腰直角三角形,AB=AC,AD=AE,M,N分別EB,CD的中點.

(1)易證:①CD=BE ;②△AMN是             三角形;

(2)當(dāng)把△ADE繞A點旋轉(zhuǎn)到圖2的位置時,

①求證:CD=BE;

②判斷△AMN的形狀,并證明你的結(jié)論;

(3)當(dāng)△ADE繞A點旋轉(zhuǎn)到圖3的位置時,(2)中的結(jié)論是否成立?直接寫出即可,不要求證明;并求出當(dāng)AB=2AD時,△ADE與△ABC及△AMN的面積之比.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1若△ABC和△ADE為等邊三角形,M,N分別EB,CD的中點,易證:CD=BE,△AMN是等邊三角形.

   (1)當(dāng)把△ADE繞A點旋轉(zhuǎn)到圖2位置時,CD=BE是否仍然成立?若成立請證明,若不成立請說明理由;

   (2)當(dāng)△ADE繞A點旋轉(zhuǎn)到圖3位置時,△AMN是否還是等邊三角形?若是,請給出證明,并求出當(dāng)AB=2AD時,△ADE與△ABC及△AMN的面積之比;若不是,請說明理由.

 


查看答案和解析>>

同步練習(xí)冊答案