【題目】在平行四邊形ABCD中,O為對(duì)角線BD的中點(diǎn),EF經(jīng)過(guò)點(diǎn)O分別交ADBCE、F兩點(diǎn),

1)如圖1,求證:AECF;

2)如圖2,若EFBD,∠AEB60°,請(qǐng)你直接寫(xiě)出與DEDE除外)相等的所有線段.

【答案】(1)證明見(jiàn)解析;(2)BE、BF、EF、DF.

【解析】

(1)根據(jù)平行四邊形的性質(zhì)以及全等三角形的判定方法證明出△EOD≌△FOB,得到DE=BF,可得結(jié)論:

(2)由(1)OE=OF,而利用對(duì)角線互相垂直的平行四邊形是菱形得出四邊形BFDE為菱形,由∠AEB=60°可得△BEF與△BEF為等邊三角形,從而得到結(jié)論.

(1)證明:四邊形ABCD是平行四邊形, BD為平行四邊形ABCD對(duì)角線BD

AD//BC,AD=BC,OB=OD.

OED=OFB,EDO=FBO.

在△EOD與△FOB中,,

EOD≌△FOB

ED=BF,

AD=BC

AE=CF.

(2)由(1)得△EOD≌△FOB

OE=OF,

OB=OD,EF⊥BD

四邊形BFDE為菱形,

∠AEB=60°,∠BED=120°,且四邊形BFDE為菱形,

∠BEF=∠DEF=60°, △BEF與△BEF為等邊三角形,

與DE相等的所有線段為:BE、BF、EF、DF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋一枚均勻硬幣正面朝上的概率為,下列說(shuō)法錯(cuò)誤的是

A. 連續(xù)拋一均勻硬幣2次必有1次正面朝上

B. 連續(xù)拋一均勻硬幣10次都可能正面朝上

C. 大量反復(fù)拋一均勻硬幣,平均100次出現(xiàn)正面朝上50

D. 通過(guò)拋一均勻硬幣確定誰(shuí)先發(fā)球的比賽規(guī)則是公平的

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=2,點(diǎn)E在邊AD上,ABE=45°,BE=DE,連接BD,點(diǎn)P在線段DE上,過(guò)點(diǎn)P作PQBD交BE于點(diǎn)Q,連接QD.設(shè)PD=x,PQD的面積為y,則能表示y與x函數(shù)關(guān)系的圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如題圖,已知A-42),Bn-4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)的圖象的兩個(gè)交點(diǎn).

1)求m,n的值;

2)求一次函數(shù)的關(guān)系式;、

3)結(jié)合圖象直接寫(xiě)出一次函數(shù)小于反比例函數(shù)的x的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A、B兩地相距4km,上午800時(shí),亮亮從A地步行到B地,820時(shí)芳芳從B地出發(fā)騎自行車到A地,亮亮和芳芳兩人離A地的距離Skm)與亮亮所用時(shí)間tmin)之間的函數(shù)關(guān)系如圖所示,芳芳到達(dá)A地時(shí)間為(

A. 830 B. 835 C. 840 D. 845

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=5,AC=4,BC=3,以邊AB的中點(diǎn)O為圓心,作半圓與AC相切,點(diǎn)P,Q分別是邊BC和半圓上的動(dòng)點(diǎn),連接PQ,則PQ長(zhǎng)的最大值與最小值的和是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們不妨約定:對(duì)角線互相垂直的凸四邊形叫做十字形”.

(1)在平行四邊形、矩形、菱形、正方形中,一定是十字形的有   

(2)如圖1,在四邊形ABCD中,ABAD,且CBCD

①證明:四邊形ABCD十字形”;

②若AB=2.BAD=60°,BCD=90°,求四邊形ABCD的面積.

(3)如圖2.A、B、C、D是半徑為1的⊙O上按逆時(shí)針?lè)较蚺帕械乃膫(gè)動(dòng)點(diǎn),ACBD交于點(diǎn)E,若∠ADBCDBABDCBD.滿足AC+BD=3,求線段OE的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓O通過(guò)五邊形OABCD的四個(gè)頂點(diǎn).若弧ABD=150°,∠A=65°,∠D=60°,則弧BC的度數(shù)為何?( 。

A. 25 B. 40 C. 50 D. 55

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在航線l的兩側(cè)分別有觀測(cè)點(diǎn)A和B,點(diǎn)B到航線l的距離BD為4km,點(diǎn)A位于點(diǎn)B北偏西60°方向且與B相距20km處.現(xiàn)有一艘輪船從位于點(diǎn)A南偏東74°方向的C處,沿該航線自東向西航行至觀測(cè)點(diǎn)A的正南方向E處.求這艘輪船的航行路程CE的長(zhǎng)度.(結(jié)果精確到0.1km)(參考數(shù)據(jù):≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)

查看答案和解析>>

同步練習(xí)冊(cè)答案