【題目】列方程解應(yīng)用題:10月1日,正值祖國母親70歲生日,我校兩校區(qū)共有4名教師光榮地加入了群眾游行﹣﹣“揚帆遠(yuǎn)航”方陣;一名老師作為志愿者,負(fù)責(zé)廣場人員的集結(jié)和疏散.老師們在周一國旗下講話時說:“我們的步數(shù)、歡呼聲、氣球浪和笑容都是有指標(biāo)的”確保隊伍行進(jìn)時做到萬無一失.載有國之重器的裝甲車,在閱兵時更是精確到秒.從東華表至西華表(東、西華表間的距離為96米)所用的時間是固定的:每輛裝甲車必須保證36s之內(nèi)通過.如果彩排時有兩輛裝甲車同時從東華表出發(fā),乙的速度是甲的1.1倍,又已知乙到達(dá)西華表的時間正好比甲提前3s,那么
(1)甲的速度是每秒多少米(結(jié)果精確到1米/秒)?
(2)這兩輛裝甲車能順利完成彩排任務(wù)嗎?請說明理由.
【答案】(1)3;(2)能,見解析
【解析】
(1)設(shè)甲車的速度為每秒x米,則乙車的速度為每秒1.1x米,根據(jù)時間=路程÷速度結(jié)合乙到達(dá)西華表的時間正好比甲提前3s,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論;
(2)根據(jù)時間=路程÷速度可求出甲車所用時間,結(jié)合甲、乙兩車所用時間之間的關(guān)系可求出乙車所用時間,再與36秒進(jìn)行比較后即可得出結(jié)論.
解:(1)設(shè)甲車的速度為每秒x米,則乙車的速度為每秒1.1x米,
依題意,得: ,
解得: ,
經(jīng)檢驗, 是原方程的解,且符合題意,
∴.
答:甲的速度約是每秒3米.
(2)(秒),33﹣3=30(秒),
∵33<36,30<36,
∴這兩輛裝甲車能順利完成彩排任務(wù).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EF(E在BC上,F在AC上)折疊,點C與點O恰好重合,則∠OEC的度數(shù)是( )
A.128°B.118°C.108°D.98°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大潤發(fā)超市在銷售某種進(jìn)貨價為20元/件的商品時,以30元/件售出,每天能售出100件.調(diào)查表明:這種商品的售價每上漲1元/件,其銷售量就將減少2件.
(1)為了實現(xiàn)每天1600元的銷售利潤,超市應(yīng)將這種商品的售價定為多少?
(2)設(shè)每件商品的售價為x元,超市所獲利潤為y元.
①求y與x之間的函數(shù)關(guān)系式;
②物價局規(guī)定該商品的售價不能超過40元/件,超市為了獲得最大的利潤,應(yīng)將該商品售價定為多少?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O中,AB為弦,直線PO交⊙O于點M、N,PO⊥AB于C,過點B作直徑BD,連接AD、BM、AP.
(1)求證:PM∥AD;
(2)若∠BAP=2∠M,求證:PA是⊙O的切線;
(3)若AD=6,tan∠M=,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】吉祥超市準(zhǔn)備購進(jìn)甲、乙兩種綠色袋裝食品共800袋.甲、乙兩種綠色袋裝食品的進(jìn)價和售價如表.已知:用2000元購進(jìn)甲種袋裝食品的數(shù)量與用1600元購進(jìn)乙種袋裝食品的數(shù)量相同.
甲 | 乙 | |
進(jìn)價(元/袋) | m | m﹣2 |
售價(元/袋) | 20 | 13 |
(1)求m的值;
(2)假如購進(jìn)的甲、乙兩種綠色袋裝食品全部賣出,所獲總利潤不少于5200元,且不超過5280元,問該超市有幾種進(jìn)貨方案?(利潤=售價﹣進(jìn)價)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角墻角AOB(OA⊥OB,且OA、OB長度不限)中,要砌20m長的墻,與直角墻角AOB圍成地面為矩形的儲倉,且地面矩形AOBC的面積為96m2.
(1)求地面矩形AOBC的長;
(2)有規(guī)格為0.80×0.80和1.00×1.00(單位:m)的地板磚單價分別為55元/塊和80元/塊,若只選其中一種地板磚都恰好能鋪滿儲倉的矩形地面(不計縫隙),用哪一種規(guī)格的地板磚費用較少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,
(1) 取點M(1,0),則點M到直線l: 的距離為_________,取直線與直線l平行,則兩直線距離為_________.
(2) 已知點P為拋物線y=x2-4x的x軸上方一點,且點P到直線l: 的距離為,求點P的坐標(biāo).
(3) 若直線y=kx+m與拋物線y=x2-4x相交于x軸上方兩點A、B(A在B的左邊),且∠AOB=90°,求點P(2,0)到直線y=kx+m的距離的最大時直線y=kx+m的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠C=900,AD是∠BAC的角分線.
(1)以AB上的一點O為圓心,AD為弦在圖中作出⊙O.(不寫作法,保留作圖痕跡);
(2)試判斷直線BC與⊙O的位置關(guān)系,并證明你的結(jié)論;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程(k﹣1)x2+(2k﹣3)x+k+1=0有兩個不相等的實數(shù)根x1,x2.
(1)求k的取值范圍;
(2)是否存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com