【題目】如圖,把RtABC放在平面直角坐標(biāo)系內(nèi),其中∠CAB90°,BC5,點(diǎn)AB的坐標(biāo)分別為(1,0),(4,0),將△ABC沿軸向右平移,當(dāng)點(diǎn)C落在直線上時,線段BC掃過的面積為( )

A. 16B. 8C. 8D. 4

【答案】A

【解析】

先計(jì)算出AB=3,再利用勾股定理計(jì)算出AC=4,從而得到C(1,4),由于△ABC沿x軸向右平移,C點(diǎn)的縱坐標(biāo)不變,則可把y=4代入y=2x-6,解得x=5,于是得到當(dāng)點(diǎn)C落在直線y=2x-6上時,線段AC向右平移了5-1=4個單位,然后根據(jù)矩形的面積公式求解即可.

∵點(diǎn)A、B的坐標(biāo)分別為(1,0)(4,0),

AB=3

∵∠CAB=90°,BC=5,

AC==4

C(1,4)

當(dāng)y=4時,2x-6=4,解得x=5,

∴當(dāng)點(diǎn)C落在直線y=2x-6上時,線段AC向右平移了5-1=4個單位,

∴線段AC掃過的面積=4×4=16,

故選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B兩個碼頭分別在一條河的兩岸AC、BD上,河岸AC、BD均為東西走向,一艘客輪以每小時30千米的速度由A碼頭出發(fā)沿北偏東50°的方向航行至B碼頭,用時1.2小時,求該河的寬度(結(jié)果精確到1千米)
【參考數(shù)據(jù):sin50°=0.77,cos50°=0.64,tan50°=1.20】

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:( 1﹣2cos30°+ +(2017﹣π)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市組織學(xué)術(shù)研討會,需租用客車接送參會人員往返賓館和觀摩地點(diǎn),客車租賃公司現(xiàn)有座和座兩種型號的客車可供租用.

1)已知座的客車每輛每天的租金比座的貴元,會務(wù)組第一天在這家公司租了座和座的客車.一天的租金為元,求座和座的客車每輛每天的租金各是多少元?

2)由于第二天參會人員發(fā)生了變化,因此會務(wù)紐需重新確定租車方案.

方案1:若只租用座的客車,會有一輛客車空出個座位;

方案2:若只租用座客車,正好坐滿且比只租用座的客車少用兩輛.

①請計(jì)算方案1、2的費(fèi)用;

②從經(jīng)濟(jì)角度考慮,還有方案3嗎?如果你是會務(wù)紐負(fù)責(zé)人,應(yīng)如何確定最終租車方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】臺風(fēng)是一種自然災(zāi)害,它以臺風(fēng)中心為圓心,在周圍數(shù)十千米范圍內(nèi)形氣旋風(fēng)暴,有極強(qiáng)的破壞力,此時某臺風(fēng)中心在海域B處,在沿海城市A的正南方向240千米,其中心風(fēng)力為12級,每遠(yuǎn)離臺風(fēng)中心25千米,臺風(fēng)就會減弱一級,如圖所示,該臺風(fēng)中心正以20千米/時的速度沿北偏東30°方向向C移動,且臺風(fēng)中心的風(fēng)力不變,若城市所受風(fēng)力達(dá)到或超過4級,則稱受臺風(fēng)影響. 試問:

(1)A城市是否會受到臺風(fēng)影響?請說明理由.

(2)若會受到臺風(fēng)影響,那么臺風(fēng)影響該城市的持續(xù)時間有多長?

(3)該城市受到臺風(fēng)影響的最大風(fēng)力為幾級?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點(diǎn)P,OF∥BC交AC于點(diǎn)E,交PC于點(diǎn)F,連接AF;

(1)判斷AF與⊙O的位置關(guān)系并說明理由.
(2)若⊙O的半徑為4,AF=3,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直線ACBD,連接AB,直線AC、BD及線段AB把平面分成①、②、③、④四個部分,規(guī)定:線上各點(diǎn)不屬于任何部分.當(dāng)動點(diǎn)P落在某個部分時,連接PA、PB,構(gòu)成∠PAC、∠APB、∠PBD三個角(提示:有公共端點(diǎn)的兩條重合的射線所組成的角是0°).

1)當(dāng)動點(diǎn)P落在第①部分時,求證:∠APB=∠PAC+∠PBD

2)當(dāng)動點(diǎn)P落在第②部分時,∠APB=∠PAC+∠PBD是否成立(直接回答成立或不成立);

3)當(dāng)動點(diǎn)P在第③部分時,全面探究∠PAC、∠APB、∠PBD之間的關(guān)系,并寫出動點(diǎn)P的具體位置和相應(yīng)的結(jié)論.選擇其中一種結(jié)論加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,E、F是四邊形ABCD的對角線AC上的兩點(diǎn),AF=CE,DF=BEDFBE

求證:(1)AFD≌△CEB.(2)四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三個城市在同一直線上(市在兩市之間),甲、乙兩車分別從市、市同時出發(fā)沿著直線公路相向而行,兩車均保持勻速行駛,已知甲車的速度大于乙車的速度,且當(dāng)甲車到達(dá)市時,甲、乙兩車都停止運(yùn)動,甲、乙兩車到市的距離之和(千米)與甲車行駛的時間(小時)之間的關(guān)系如圖所示,則當(dāng)乙車到達(dá)市時,甲車離市還有_______千米.

查看答案和解析>>

同步練習(xí)冊答案