【題目】已知:如圖1,和均為等邊三角形,點A、D、E在同一直線上,連接BE.
求證:;
求的度數(shù);
拓展探究:如圖2,和均為等腰直角三角形,,點A、D、E在同一直線上,CM為中DE邊上的高,連接BE.
的度數(shù)為______;探索線段CM、AE、BE之間的數(shù)量關系為______直接寫出答案,不需要說明理由.
【答案】見解析,
【解析】
由條件和均為等邊三角形,易證≌,從而得到對應邊相等,即;
根據(jù)≌,可得,由點A,D,E在同一直線上,可求出,從而可以求出的度數(shù);
首先根據(jù)和均為等腰直角三角形,可得,,,據(jù)此判斷出;然后根據(jù)全等三角形的判定方法,判斷出≌,即可判斷出,,進而判斷出的度數(shù)為;根據(jù),,,可得,所以,據(jù)此判斷出.
解:
如圖1,和均為等邊三角形,
,,,
.
在和中,
,
≌,
;
如圖1,≌,
,
為等邊三角形,
,
點A,D,E在同一直線上,
,
,
;
如圖2,和均為等腰直角三角形,
,,,,
,
即,
在和中,
,
≌,
,,
點A,D,E在同一直線上,
,
,
,
故答案為:90;
如圖2,,,,
,
,
≌已證,
,
,
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】在一個口袋中有4個完全相同的小球,把它們分別標號為1,2,3,4,隨機地摸出一個小球不放回,再隨機地摸出一個小球,則兩次摸出的小球的標號的和為奇數(shù)的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀:
我們知道,于是要解不等式,我們可以分兩種情況去掉絕對值符號,轉化為我們熟悉的不等式,按上述思路,我們有以下解法:
解:(1)當,即時:
解這個不等式,得:
由條件,有:
(2)當,即時,
解這個不等式,得:
由條件,有:
∴ 如圖,
綜合(1)、(2)原不等式的解為:
根據(jù)以上思想,請?zhí)骄客瓿上铝?/span>個小題:
;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖a是一個長為、寬為的長方形(其中>), 沿圖中虛線用剪刀均分成四塊小長方形, 然后按圖的形狀拼成一個正方形,
(1)①請你用兩種不同的方法表示圖中的陰影部分的面積 ; ;
②請寫出代數(shù)式:,,之間的關系: ;
(2)若,求:的值;
(3)已知,求: 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩艘海監(jiān)船剛好在某島東西海岸線上的A、B兩處巡邏,同時發(fā)現(xiàn)一艘不明國籍船只停在C處海域,AB=60( +1)海里,在B處測得C在北偏東45°反向上,A處測得C在北偏西30°方向上,在海岸線AB上有一燈塔D,測得AD=100海里.
(1)分別求出AC,BC(結果保留根號).
(2)已知在燈塔D周圍80海里范圍內有暗礁群,在A處海監(jiān)穿沿AC前往C處盤查,途中有無觸礁的危險?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2017年懷柔區(qū)中考體育加試女子800米耐力測試中,同時起跑的李麗和吳梅所跑的路程米與所用時間秒之間的函數(shù)圖象分別為線段OA和折線下列說法正確的是
A. 李麗的速度隨時間的增大而增大
B. 吳梅的平均速度比李麗的平均速度大
C. 在起跑后180秒時,兩人相遇
D. 在起跑后50秒時,吳梅在李麗的前面
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=kx+b經過點A(﹣30,0)和點B(0,15),直線y=x+5與直線y=kx+b相交于點P,與y軸交于點C.
(1)求直線y=kx+b的解析式.
(2)求△PBC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明同學騎自行車去郊外春游,騎行1小時后,自行車出現(xiàn)故障,維修好后繼續(xù)騎行,下圖表示他離家的距離y(千米)與所用的時間x(時)之間關系的圖象.
(1)根據(jù)圖象回答:小明到達離家最遠的地方用了多長時間?此時離家多遠?
(2)求小明出發(fā)2.5小時后離家多遠;
(3)求小明出發(fā)多長時間離家12千米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com