為了鼓勵市民節(jié)約用水,市政府制定了新的收費標準:設用水量為x噸,需付水費為y元,y與x的函數(shù)圖象如圖.
(1)寫出y與x的函數(shù)關系.
(2)小華家今年5月交水費17元,則這月小華家用水多少噸?
(3)已知某住宅小區(qū)100戶居民5月份共付水費1682元,且該月每戶用水量均不超過15噸,求該月用水量不超過10噸的居民最多可能有多少戶?
A型B型
成本(萬元/套)2030
售價(萬元/套)2538

(1)當x≤10時,y=1.3x,當x>10時,y=13+2(x-10);

(2)設小華家四月份用水量為x噸.
∵17>1.30×10,
∴小華家四月份用水量超過10噸.
由題意得:1.3×10+(x-10)×2=17,
∴2x=24,
∴x=12(噸).
即小華家四月份的用水量為12噸;

(3)設該月用水量不超過10噸的用戶有a戶,則超過10噸不超過15噸的用戶為(100-a)戶.
由題意得:13a+[13+(15-10)×2](100-a)≥1682,
化簡得:10a≤618,
∴a≤61.8,
故正整數(shù)a的最大值為61.
即這個月用水量不超過10噸的居民最多可能有61戶.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標系中,已知矩形OABC點B的坐標是(3,2),對角線AC所在直線為l,求直線l對應的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知長方形ABCO,O為坐標原點,點B的坐標為(8,6),A、C分別在坐標軸上,P是線段BC上動點,設PC=m,已知點D在第一象限且是直線y=2x+6上的一點,若△APD是等腰直角三角形.
(1)求點D的坐標;
(2)直線y=2x+6向右平移6個單位后,在該直線上,是否存在點D,使△APD是等腰直角三角形?若存在,請求出這些點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,矩形OABC的邊OA=2,0C=6,在OC上取點D將△AOD沿AD翻折,使O點落在AB邊上的E點處,將一個足夠大的直角三角板的頂點P從D點出發(fā)沿線段DA→AB移動,且一直角邊始終經(jīng)過點D,另一直角邊所在直線與直線DE,BC分別交于點M,N.
(1)填空:D點坐標是(______,______),E點坐標是(______,______);
(2)如圖1,當點P在線段DA上移動時,是否存在這樣的點M,使△CMN為等腰三角形?若存在,請求出M點坐標;若不存在,請說明理由;
(3)如圖2,當點P在線段AB上移動時,設P點坐標為(x,2),記△DBN的面積為S,請直接寫出S與x之間的函數(shù)關系式,并求出S隨x增大而減小時所對應的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知直線y=kx+b經(jīng)過點(0,-2)和點(-2,0).
(1)求直線的解析式;
(2)在圖中畫出直線,并觀察y>1時,x的取值范圍(直接寫答案);
(3)求此直線與兩坐標軸圍成三角形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

抗震救災中,某縣糧食局為了保證庫存糧食的安全,決定將甲、乙兩個倉庫的糧食,全部轉移到具有較強抗震功能的A、B兩倉庫.已知甲庫有糧食100噸,乙?guī)煊屑Z食80噸,而A庫的容量為70噸,B庫的容量為110噸.從甲、乙兩庫到A、B兩庫的路程和運費如下表:(表中“元/噸•千米”表示每噸糧食運送1千米所需人民幣)
路程(千米)運費(元/噸•千米)
甲庫乙?guī)?/td>甲庫乙?guī)?/td>
A庫20151212
B庫2520108
(1)若甲庫運往A庫糧食x噸,請寫出將糧食運往A、B兩庫的總運費y(元)與x(噸)的函數(shù)關系式;
(2)當甲、乙兩庫各運往A、B兩庫多少噸糧食時,總運費最省,最省的總運費是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

兩摞相同規(guī)格的飯碗整齊地疊放在桌面上,請根據(jù)圖中給出的數(shù)據(jù)信息,解答問題:
(1)求整齊疊放在桌面上飯碗的高度y(cm)與飯碗數(shù)x(個)之間的一次函數(shù)關系式(不要求寫出自變量x的取值范圍);
(2)若桌面上有12個飯碗,整齊疊放成一摞,求出它的高度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在同一條直線上依次有A、B、C三地,甲、乙二人同時分別從A、B兩地同向去C地,若甲、乙二人x小時候與B地的距離分別為y1千米、y2千米,且其圖象如圖所示,則甲、乙相遇時,甲走了______千米.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某實驗大棚的一種花草每天的需水量y(千克)與生長時間x(天)之間的關系如折線圖所示.這些花草在第5天、第15天的需水量分別為1000千克、1500千克,在第20天后每天的需水量比前一天增加90千克.
(1)分別求出x≤20和x>20時,y與x之間的關系式;
(2)如果這些花草每天的需水量大于或等于2200千克時需要進行人工澆灌,那么應從第幾天開始進行人工澆灌?

查看答案和解析>>

同步練習冊答案