【題目】已知如圖,在正方形ABCD中,AD=4,E,F(xiàn)分別是CD,BC上的一點,且∠EAF=45°,EC=1,將△ADE繞點A沿順時針方向旋轉90°后與△ABG重合,連接EF,過點B作BM∥AG,交AF于點M,則以下結論:①DE+BF=EF,②BF=,③AF=,④S△MEF=中正確的是
A. ①②③ B. ②③④ C. ①③④ D. ①②④
科目:初中數學 來源: 題型:
【題目】如圖在Rt△ABC中,∠ACB=90°,D是邊AB的中點,BE⊥CD,垂足為點E.已知AC=15,cosA=.
(1)求線段CD的長;
(2)求sin∠DBE的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q兩點分別從A,B同時出發(fā),點P沿折線AB﹣BC運動,在AB上的速度是2cm/s,在BC上的速度是2cm/s;點Q在BD上以2cm/s的速度向終點D運動,過點P作PN⊥AD,垂足為點N.連接PQ,以PQ,PN為鄰邊作PQMN.設運動的時間為x(s),PQMN與矩形ABCD重疊部分的圖形面積為y(cm2)
(1)當PQ⊥AB時,x等于多少;
(2)求y關于x的函數解析式,并寫出x的取值范圍;
(3)直線AM將矩形ABCD的面積分成1:3兩部分時,直接寫出x的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖在Rt△ABC中,∠ACB=90°,D是邊AB的中點,BE⊥CD,垂足為點E.已知AC=15,cosA=.
(1)求線段CD的長;
(2)求sin∠DBE的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的方程x2-2(k-1)x+k2 =0有兩個實數根x1.x2.
(1)求實 數k的取值范圍;
(2)若(x1+1)(x2+1)=2,試求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線的表達式為,線段AB的兩個端點分別為A(1,2),B(3,2)
(1)若拋物線經過原點,求出的值;
(2)求拋物線頂點C的坐標(用含有m的代數式表示);
(3)若拋物線與線段AB恰有一個公共點,結合函數圖象,求出m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD的周長為28,對角線AC、BD相交于點O,點E是CD的中點,BD=12,則△DOE的周長為( )
A.28B.12C.13D.17
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AB=10,BC、CD、DA是⊙O的弦,且BC=CD=DA,若點P是直徑AB上的一動點,則PD+PC的最小值為_____.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com