【題目】如圖,AB是⊙O的直徑,AB=10,BC、CD、DA是⊙O的弦,且BC=CD=DA,若點(diǎn)P是直徑AB上的一動(dòng)點(diǎn),則PD+PC的最小值為_____

【答案】10

【解析】

作出點(diǎn)C關(guān)于AB的對(duì)稱點(diǎn)C′,連接CD,根據(jù)軸對(duì)稱確定最短路線問題,CDAB的交點(diǎn)即為所求的點(diǎn)P,連接CP,根據(jù)同弧所對(duì)的圓周角等于圓心角的一半求出∠B=60°,然后求出ABCD,再求出∠BCD=120°,再求出∠BCC=30°,然后求出∠CCD=90°,從而判斷出CD為圓的直徑.

如圖,作出點(diǎn)C關(guān)于AB的對(duì)稱點(diǎn)C′,連接CD,

CDAB的交點(diǎn)即為所求的點(diǎn)P,連接CPCD=PC+PD,

AB是⊙O的直徑,BC=CD=DA,

∴∠B=××180°=60°,

AD=BC,

ABCD,

∴∠BCD=120°,

∴∠BCC=×60°=30°,

∴∠CCD=120°-30°=90°,

CD為圓的直徑,

AB是⊙O的直徑,AB=10

PD+PC的最小值為10,

故答案為:10

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,在正方形ABCD中,AD=4,E,F(xiàn)分別是CD,BC上的一點(diǎn),且∠EAF=45°,EC=1,將△ADE繞點(diǎn)A沿順時(shí)針方向旋轉(zhuǎn)90°后與△ABG重合,連接EF,過點(diǎn)B作BM∥AG,交AF于點(diǎn)M,則以下結(jié)論:①DE+BF=EF,②BF=,③AF=,④S△MEF=中正確的是  

A. ①②③ B. ②③④ C. ①③④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AB⊙O的直徑,C、D⊙O上的點(diǎn),且OC∥BD, AD分別與BC,OC相交于點(diǎn)E,F(xiàn),則下列結(jié)論:①AD⊥BD; ②∠AOC=∠AEC; ③CB平分∠ABD;④AF=DF; ⑤BD=2OF; ⑥△CEF ≌△BED,其中一定成立的是(

A. ① ③ ⑤ ⑥ B. ① ③ ④ ⑤

C. ② ④ ⑤ ⑥ D. ② ③ ④ ⑥

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC, ,直線l從與AC重合的位置開始以每秒個(gè)單位的速度沿CB方向平行移動(dòng),且分別與CB,AB邊交于D,E兩點(diǎn),動(dòng)點(diǎn)FA開始沿折線ACCBBA運(yùn)動(dòng),點(diǎn)FACCB,BA邊上運(yùn)動(dòng)的速度分別為每秒3,4,5個(gè)單位,點(diǎn)F與直線l同時(shí)出發(fā),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)點(diǎn)F第一次回到點(diǎn)A時(shí),點(diǎn)F與直線 l同時(shí)停止運(yùn)動(dòng).運(yùn)動(dòng)過程中,作點(diǎn)F關(guān)于直線DE的對(duì)稱點(diǎn),記為點(diǎn),若形成的四邊形 為菱形,則所有滿足條件的之和為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△AOB中,∠AOB=90°,點(diǎn)A的坐標(biāo)為(4,2),BO=4,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)B,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,EAC邊上的一點(diǎn),且AE=AB,∠BAC=2∠CBE,以AB為直徑作⊙OAC于點(diǎn)D,交BE于點(diǎn)F

1)求證:BC⊙O的切線;

2)若AB=8,BC=6,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=-x+4的圖象與反比例函數(shù)y=k為常數(shù),且k0)的圖象交于A1,a),B兩點(diǎn).

1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);

2)結(jié)合圖象直接寫出不等式-x+4的解集

3)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)及△PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣4x+4與x軸、y軸分別交于A、B兩點(diǎn),以AB為邊在第一象限作正方形ABCD,將正方形ABCD沿x軸負(fù)方向平移a個(gè)單位長(zhǎng)度后,點(diǎn)C恰好落在雙曲線在第一象限的分支上,則a的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn) O 是等邊ABC 內(nèi)一點(diǎn),AOB=110°,BOCa.將BOC 繞點(diǎn) C 按順時(shí)針方向旋轉(zhuǎn) 60°ADC,則ADC≌△BOC,連接 OD

(1)求證:COD 是等邊三角形;

(2)當(dāng)α=120°時(shí),試判斷 AD OC 的位置關(guān)系,并說明理由;

(3)探究:當(dāng) a 為多少度時(shí),AOD 是等腰三角形?

查看答案和解析>>

同步練習(xí)冊(cè)答案