【題目】如圖,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°.求:∠DCE和∠DCA的度數(shù).
請(qǐng)將以下解答補(bǔ)充完整,
解:因?yàn)椤螪AB+∠D=180°
所以DC∥AB(
所以∠DCE=∠B(
又因?yàn)椤螧=95°,
所以∠DCE=°;
因?yàn)锳C平分∠DAB,∠CAD=25°,根據(jù)角平分線定義,
所以∠CAB==°,
因?yàn)镈C∥AB
所以∠DCA=∠CAB,(
所以∠DCA=°.

【答案】同旁內(nèi)角互補(bǔ),兩直線平行;兩直線平行,同位角相等;95;∠CAD;25;兩直線平行,內(nèi)錯(cuò)角相等;25
【解析】解:∵∠DAB+∠D=180°,

∴DC∥AB(同旁內(nèi)角互補(bǔ),兩直線平行),

∴∠DCE=∠B(兩直線平行,同位角相等).

又∵∠B=95°,

∴∠DCE=95°;

∵AC平分∠DAB,∠CAD=25°,

∴∠CAB=∠CAD=25°,

∵DC∥AB

∴∠DCA=∠CAB,(兩直線平行,內(nèi)錯(cuò)角相等),

∴∠DCA=25°.

所以答案是:同旁內(nèi)角互補(bǔ),兩直線平行;兩直線平行,同位角相等;95;∠CAD,25;兩直線平行,內(nèi)錯(cuò)角相等;25.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平行線的判定與性質(zhì)的相關(guān)知識(shí),掌握由角的相等或互補(bǔ)(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(bǔ)(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,∠BCD=120°,分別延長(zhǎng)DC、BC到點(diǎn)E,F(xiàn),使得△BCE和△CDF都是正三角形.

(1)求證:AE=AF;

(2)求∠EAF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC , D為邊BC上一點(diǎn),以AB、BD為鄰邊作平行四邊形ABDE , 連接ADEC . 若BDCD , 求證:四邊形ADCE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是長(zhǎng)方形紙帶,∠DEF=10°,將紙帶沿EF折疊成圖2,再沿BF折疊成圖3,則圖3中∠CFE度數(shù)是多少(
A.160°
B.150°
C.120°
D.110°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在RtABC中,ACB=90°,點(diǎn)D為斜邊AB的中點(diǎn),BC=6,CD=5,過點(diǎn)A作AEAD且AE=AD,過點(diǎn)E作EF垂直于AC邊所在的直線,垂足為點(diǎn)F,連接DF,請(qǐng)你畫出圖形,并直接寫出線段DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組: ,并在數(shù)軸上表示它的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn).

(1)求證:△ACE≌△BCD;

(2)求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在鈍角△ABC中,點(diǎn)D是BC的中點(diǎn),分別以AB和AC為斜邊向△ABC的外側(cè)作等腰直角三角形ABE和等腰直角三角形ACF,M、N分別為AB、AC的中點(diǎn),連接DM、DN、DE、DF、EM、EF、FN.求證:

(1)△EMD≌△DNF;

(2)△EMD∽△EAF;

(3)DE⊥DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一塊等腰直角三角形鐵板,通過切割焊接成一個(gè)含有45°角的平行四邊形,設(shè)計(jì)一種簡(jiǎn)要的方案并給出正確的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案