【題目】如圖,將長方形ABCD沿AC對折,使AABC落在04EC的位置,且CE與AD相交于點F.
(1)求證:EF=DF;
(2)若AB=,BC=3,求折疊后的重疊部分(陰影部分)的面積.
【答案】(1)見解析;(2)
【解析】
(1)根據折疊的性質得到AE=AB,∠E=∠B=90°,易證Rt△AEF≌Rt△CDF,即可得到結論;
(2)根據(1)易得FC=FA,設FA=x,則FC=x,FD=3-x,在Rt△CDF中利用勾股定理得到關于x的方程,解方程求出x,然后根據三角形的面積公式計算即可.
(1)證明:如圖,∵矩形ABCD沿對角線AC對折,使ΔABC落在ΔACE的位置,
∴AE=AB,∠E=∠B=90°,
又∵四邊形ABCD為矩形,
∴AB=CD,
∴AE=DC,
而∠AFE=∠DFC,
∴RtΔAEF≌RtΔCDF,
∴EF=DF
(2)∵四邊形ABCD為矩形,
∴AD=BC=3,CD=AB=,
∵RtΔAEF≌RtΔCDF,
∴FC=FA,
設FA=x,則FC=x,FD=3-x,
在RtΔCDF中,,即,解得x=2,
∴折疊后的重疊部分的面積=AF·CD=×2×=.
科目:初中數學 來源: 題型:
【題目】如圖,已知:∠MON=30o,點A1、A2、A3 在射線ON上,點B1、B2、B3…..在射線OM上,△A1B1A2. △A2B2A3、△A3B3A4……均為等邊三角形,若OA1=l,則△A6B6A7 的邊長為【 】
A.6 B.12 C.32 D.64
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料,并完成相應的任務:求根分解法是多項式因式分解的一種方法,是用求多項式對應的方程的根分離出多項式的一次因式.
設f(x)是一元多項式,若方程f(x)=0有一個根為x=a,則多項式必有一個一次因式x﹣a,于是f(x)=(x﹣a)g(x).
例如,設多項式7x2﹣x﹣6為f(x),則有f(x)=7x2﹣x﹣6,令7x2﹣x﹣6=0,容易看出,此方程有一根為x=1,則f(x)必有一個一次因式x﹣1,那么得到7x2﹣x﹣6=(x﹣1)(mx+n)(m、n為常數)而(x﹣1)(mx+n)=mx2+(n﹣m)x﹣n,所以7x2﹣x﹣6=mx2+(n﹣m)x﹣n,由系數對應相等可得m=7,n=6,所以7x2﹣x﹣6=(x﹣1)(7x+6).
任務:(1)方程x3﹣3x2+4=0的一根為 .
(2)請你根據上面的材料因式分解多項式:x3﹣3x2+4= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,過點A(0,6)的直線AB與直線OC相交于點C(2,4)動點P沿路線O→C→B運動.(1)求直線AB的解析式;(2)當△OPB的面積是△OBC的面積的時,求出這時點P的坐標;(3)是否存在點P,使△OBP是直角三角形?若存在,直接寫出點P的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,O為矩形ABCD對角線的交點,DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形;
(2)若AB=3,BC=4,求四邊形OCED的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】沐陽特產專賣店銷售某種物產,其進價為每千克元,若按每千克元出售,則平均每天可售出千克,后來經過市場調查發(fā)現,單價每降低元,平均每天的銷售量增加千克,若專賣店銷售這種特產平均每天獲利元,且銷量盡可能大,則每千克特產應定價為多少元?
解:方法:設每千克特產應降價元,由題意,得方程為: ________;
方法:設每千克特產降價后定價為元,由題意,得方程為:________.
請你選擇其中一種方法完成解答.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為表彰在“書香校園”活動中表現積極的同學,決定購買筆記本和鋼筆作為獎品.已知5個筆記本、2支鋼筆共需要100元;4個筆記本、7支鋼筆共需要161元
(1)筆記本和鋼筆的單價各多少元?
(2)恰好“五一”,商店舉行“優(yōu)惠促銷”活動,具體辦法如下:筆記本9折優(yōu)惠;鋼筆10支以上超出部分8折優(yōu)惠若買x個筆記本需要y1元,買x支鋼筆需要y2元;求y1、y2關于x的函數解析式;
(3)若購買同一種獎品,并且該獎品的數量超過10件,請你分析買哪種獎品省錢.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com