【題目】兩個全等的直角三角形 ABC 和 DEF 重疊在一起,其中∠A=60°,AC=1.固定△ABC 不動,將△DEF 進行如下操作:

(1)如圖,△DEF 沿線段 AB 向右平移(即 D 點在線段 AB 內移動),連接 DC、CF、FB,四邊形 CDBF 的形狀在不斷的變化,但它的面積不變化,請求出其面積.

(2)如圖,當 D 點移到 AB 的中點時,請你猜想四邊形CDBF 的形狀,并說明理由.

(3)如圖,△DEF 的 D 點固定在 AB 的中點,然后繞 D 點按順時針方向旋轉△DEF,使 DF 落在 AB 邊上,此時 F 點恰好與 B 點重合,連接 AE,請你求出 sinα的值.

【答案】1)過點CCG⊥ABG

Rt△ACG∵∠A60°

∴sin60°……………1

Rt△ABC∠ACB90°∠ABC30°

∴AB=2 …………………………………………2

………3

2)菱形………………………………………4

∵DAB的中點 ∴AD=DB=CF=1

Rt△ABC中,CD是斜邊中線 ∴CD=1……5

同理 BF=1 ∴CD=DB=BF=CF

四邊形CDBF是菱形…………………………6

3)在Rt△ABE

……………………………7

過點DDH⊥AE 垂足為H

△ADH∽△AEB ∴

∴ DH=……8

Rt△DHE

sinα==…=…………………9

【解析】

1)根據(jù)平移的性質得到AD=BE,再結合兩條平行線間的距離相等,則三角形ACD的面積等于三角形BEF的面積,所以要求的梯形的面積等于三角形ABC的面積.根據(jù)60度的直角三角形ABCAC=1,即可求得BC的長,從而求得其面積;

2)根據(jù)直角三角形斜邊上的中線等于斜邊的一半和平移的性質,即可得到該四邊形的四條邊都相等,則它是一個菱形;

3)過D點作DH⊥AEH,可以把要求的角構造到直角三角形中,根據(jù)三角形ADE的面積的不同計算方法,可以求得DH的長,進而求解.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A 的坐標是(4,0),并且0A=OC=4OB,動點P在過A,B,C三點的拋物線上.

(1) 求拋物線的解析式;

(2)過動點PPE垂直于y軸于點E,交直線AC于點D,過點Dx軸的垂線,垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標;

(3) 是否存在點P,使得ACP是以AC為直角邊的直角三角形? 若存在,求出所有符合條件的點P的坐標; 若不存在,說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某體育用品商場預測某品牌運動服能夠暢銷,就用32000元購進了一批這種運動服,上市后很快脫銷,商場又用68000元購進第二批這種運動服,所購數(shù)量是第一批購進數(shù)量的2倍,但每套進價多了10元.

1)該商場兩次共購進這種運動服多少套?

2)如果這兩批運動服每套的售價相同,且全部售完后總利潤不低于20%,那么每套售價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,點E,點F為對角線BD上兩點,DEEFFB

(1)求證:四邊形AFCE是平行四邊形;

(2)AEBD,AF3AB4,求BF的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示,一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于, 兩點.

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)設點是反比例函數(shù)圖象上兩點,,求的值;

3)若Mx1y1)和Nx2,y2)兩點在直線AB上,如圖2所示,過M、N兩點分別作y軸的平行線交雙曲線于EF,已知﹣3x10,x21,請?zhí)骄慨?/span>x1、x2滿足什么關系時,MNEF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),P為ABC所在平面上一點,且APB=BPC=CPA=120°,則點P叫做ABC的費馬點.

(1)如果點P為銳角ABC的費馬點,且ABC=60°.

①求證:ABP∽△BCP;

②若PA=3,PC=4,則PB=

(2)已知銳角ABC,分別以AB、AC為邊向外作正ABE和正ACD,CE和BD 相交于P點.如圖(2)

①求CPD的度數(shù);

②求證:P點為ABC的費馬點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù).

(1)當二次函數(shù)的圖象經(jīng)過坐標原點O(0,0),求二次函數(shù)的解析式

(2)如圖,m=2,該拋物線與y軸交于點C,頂點為D,求C、D兩點的坐標;

(3)(2)的條件下,x軸上是否存在一點P,使得PC+PD最短?若P點存在,求出P點的坐標;若P點不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,圖2,圖3,圖4均為8×8的正方形網(wǎng)格,每個小正方形的頂點稱為格點,每個小正方形的邊長均為1,圖中均有線段AB.按要求畫圖.

1)在圖1中,以格點為頂點,AB為腰畫一個銳角等腰三角形;

2)在圖2中,以格點為頂點,AB為底邊畫一個銳角等腰三角形.

3)在圖3中,以格點為頂點,AB為腰畫一個等腰直角三角形;

4)在圖4中,以格點為頂點,AB為一邊畫一個正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2013年四川綿陽12分)低碳生活,綠色出行,自行車正逐漸成為人們喜愛的交通工具.某運動商城的自行車銷售量自2013年起逐月增加,據(jù)統(tǒng)計,該商城1月份銷售自行車64輛,3月份銷售了100輛.

1)若該商城前4個月的自行車銷量的月平均增長率相同,問該商城4月份賣出多少輛自行車?

2)考慮到自行車需求不斷增加,該商城準備投入3萬元再購進一批兩種規(guī)格的自行車,已知A型車的進價為500/輛,售價為700/輛,B型車進價為1000/輛,售價為1300/輛.根據(jù)銷售經(jīng)驗,A型車不少于B型車的2倍,但不超過B型車的2.8倍.假設所進車輛全部售完,為使利潤最大,該商城應如何進貨?

查看答案和解析>>

同步練習冊答案