【題目】如圖①,AB為半圓的直徑,O為圓心,C為圓弧上一點(diǎn),AD垂直于過C點(diǎn)的切線,垂足為D,AB的延長線交直線CD于點(diǎn)E.
(1)求證:AC平分∠DAB;
(2)若AB=6,B為OE的中點(diǎn),CF⊥AB,垂足為點(diǎn)F,求CF的長;
(3)如圖②,連接OD交AC于點(diǎn)G,若=,求cosE的值.
【答案】(1)見解析;(2);(3)
【解析】
(1)連結(jié)OC,如圖1,根據(jù)切線的性質(zhì)得OC⊥DE,而AD⊥DE,根據(jù)平行線的性質(zhì)得OC∥AD,所以∠2=∠3,加上∠1=∠3,則∠1=∠2,所以AC平分∠DAB;
(2)如圖1,由B為OE的中點(diǎn),AB為直徑得到OB=BE=3,OC=3,在Rt△OCE中,由于OE=2OC,根據(jù)含30度的直角三角形三邊的關(guān)系得∠OEC=30°,則∠COE=60°,由CF⊥AB得∠OFC=90°,所以∠OCF=30°,再根據(jù)含30度的直角三角形三邊的關(guān)系得OF=OC=,再由勾股定理即可求出CF的長度;
(3)連結(jié)OC,如圖2,先證明△OCG∽△DAG,利用相似的性質(zhì)得==,再證明△ECO∽△EDA,利用相似比得到==,設(shè)⊙O的半徑為R,OE=x,代入求得OE=3R,最后在Rt△OCE中,根據(jù)余弦的定義求解.
(1)證明:連結(jié)OC,如圖1,
∵DE與⊙O切于點(diǎn)C,
∴OC⊥DE,
∵AD⊥DE,
∴OC∥AD,
∴∠2=∠3,
∵OA=OC,
∴∠1=∠3,
∴∠1=∠2,
即AC平分∠DAB;
(2)∵直徑AB=6,B為OE的中點(diǎn),
∴OB=BE=4,OC=3,
在Rt△OCE中,OE=2OC,
∴∠OEC=30°,
∴∠COE=60°,
∵CF⊥AB,
∴∠OFC=90°,
∴∠OCF=30°,
∴OF==OC=,
∴由勾股定理可知:CF=
(3)連結(jié)OC,如圖2,
∵OC∥AD,
∴△OCG∽△DAG,
∴==,
∵OC∥AD,
∴△ECO∽△EDA,
∴==,
設(shè)⊙O的半徑為R,OE=x,
∴=,解得OE=x=3R,
在Rt△OCE中,
由勾股定理可知:CE=2√2R,
cos∠E==.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動課上,小明同學(xué)根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)的圖像、性質(zhì)進(jìn)行了探究,下面是小明同學(xué)探究過程,請補(bǔ)充完整:
如圖1,已知在,,,,點(diǎn)為邊上的一個動點(diǎn),連接.設(shè),.
(初步感知)
(1)當(dāng)時(shí),則①________,②________;
(深入思考)
(2)試求與之間的函數(shù)關(guān)系式并寫出自變量的取值范圍;
(3)通過取點(diǎn)測量,得到了與的幾組值,如下表:
0 | 0.5 | 1 | 1.5 | 2. | 2.5 | 3 | 3.5 | 4 | |
2 | 1.8 | 1.7 | _____ | 2 | 2.3 | 2.6 | 3.0 | _____ |
(說明:補(bǔ)全表格時(shí)相關(guān)數(shù)值保留一位小數(shù))
1)建立平面直角坐標(biāo)系,如圖2,描出已補(bǔ)全后的表中各對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
2)結(jié)合畫出的函數(shù)圖象,寫出該函數(shù)的兩條性質(zhì):
①________________________________;②________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】揭西縣圍繞“推進(jìn)‘六穩(wěn)’,拉動消費(fèi)”為主題,舉辦“揭西人游揭西”活動,從4月份到6月份,分批次免費(fèi)游覽縣內(nèi)相關(guān)旅游景區(qū)景點(diǎn).某班級全班同學(xué)分別從A、B、C、D、E五個景區(qū)中選出自己最喜歡的一個,繪制出如下的統(tǒng)計(jì)圖①和圖②,請根據(jù)相關(guān)信息,解答下列問題:
(1)圖①中m的值為.扇形統(tǒng)計(jì)圖中,B景區(qū)所對的圓心角的大小是;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)甲乙兩個同學(xué)分別從A、B、C、D四個景區(qū)中隨機(jī)挑出一個景區(qū)各自游玩,請用樹狀圖或列表的方法求出他們剛好選到同一個景區(qū)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD,兩條對角線相交于O點(diǎn),過點(diǎn)O作AC的垂線EF,分別交AD、BC于E、F點(diǎn),連結(jié)CE,若OCcm,CD=4cm,則DE的長為( )
A.cmB.5cmC.3cmD.2cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A是直線x=1上一個動點(diǎn),以A為頂點(diǎn)的拋物線y1=a(x﹣1)2+t和拋物線y2=ax2交于點(diǎn)B(A,B不重合,a是常數(shù)),直線AB和拋物線y2=ax2交于點(diǎn)B,C,直線x=1和拋物線y2=ax2交于點(diǎn)D.(如圖僅供參考)
(1)求點(diǎn)B的坐標(biāo)(用含有a,t的式子表示);
(2)若a<0,且點(diǎn)A向上移動時(shí),點(diǎn)B也向上移動,求的范圍;
(3)當(dāng)B,C重合時(shí),求的值;
(4)當(dāng)a>0,且△BCD的面積恰好為3a時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)yx+b的圖象與x軸,y軸分別交于A,B兩點(diǎn),與反比例函數(shù)y(x<0)的圖象交于點(diǎn)C(﹣2,2).
(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)過點(diǎn)B作x軸的平行線交反比例函數(shù)的圖象于點(diǎn)D,連接CD.求△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知拋物線與軸,軸分別交于點(diǎn),此拋物線的對稱軸為直線 .
求出此拋物線的解析式;
如圖 1,拋物線的頂點(diǎn)為點(diǎn),點(diǎn)是直線下方拋物線上的一點(diǎn)(異于點(diǎn)),當(dāng)時(shí),求出點(diǎn)的坐標(biāo);
在的條件下,將拋物線沿射線方向平移,點(diǎn)的對應(yīng)點(diǎn)為,在拋物線平移的過程中,若,請直接寫出此時(shí)平移后的拋物線解析式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家商店經(jīng)營一種玩具,進(jìn)價(jià)為每件50元,調(diào)查市場發(fā)現(xiàn)日銷售量y(件)是關(guān)于售價(jià)x(元/件)的一次函數(shù),相關(guān)數(shù)據(jù)如表,商店每天的總支出是600元.
售價(jià)(元/件) | 50 | 55 | 60 | 65 |
日銷售量y/件 | 80 | 70 | 60 | 50 |
(1)直接寫出y與x之間的函數(shù)關(guān)系式.(不要求寫出自變量x的取值范圍)
(2)商店在“五一”這天盡可能優(yōu)惠顧客,正好收支平衡(收入=支出),問當(dāng)天玩具的售價(jià)為多少元/件.
(3)商店最早需要多少天,純利可以突破萬元,玩具的售價(jià)應(yīng)定為多少元/件?(每天純利=每天的銷售額﹣成本﹣每天的支出)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com