【題目】如圖,已知二次函數(shù)的圖象與x軸分別交于A(1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求此二次函數(shù)解析式;
(2)點(diǎn)D為拋物線的頂點(diǎn),試判斷△BCD的形狀,并說明理由;
(3)在拋物線的對稱軸上是否存在一點(diǎn)P,使得PC+PA最短?若P點(diǎn)存在,求出P點(diǎn)的坐標(biāo);若P點(diǎn)不存在,請說明理由.
【答案】(1)y=x2﹣4x+3;(2)△BCD為直角三角形;(3)存在.P(2,1).
【解析】
(1)根據(jù)點(diǎn)A、B的坐標(biāo),利用待定系數(shù)法即可求出二次函數(shù)解析式;
(2)利用配方法及二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,可求出點(diǎn)C、D的坐標(biāo),利用兩點(diǎn)間的距離公式可求出CD、BD、BC的長,由BC2+BD2=CD2可證出△BCD為直角三角形;
(3)由(1)知該拋物線的對稱軸為x=2,點(diǎn)A關(guān)于對稱軸x=2的對稱點(diǎn)為點(diǎn)B,連接BC,則直線BC與對稱軸x=2的交點(diǎn)即為點(diǎn)P.求出BC所在直線解析式,求出x=2時(shí)y的值,進(jìn)而得出答案.
(1)將A(1,0)、B(3,0)代入y=ax2+bx+3,得:
,解得:,
∴此二次函數(shù)解析式為y=x2﹣4x+3.
(2)△BCD為直角三角形,理由如下:
∵y=x2﹣4x+3=(x﹣2)2﹣1,
∴頂點(diǎn)D的坐標(biāo)為(2,﹣1).
當(dāng)x=0時(shí),y=x2﹣4x+3=3,
∴點(diǎn)C的坐標(biāo)為(0,3).
∵點(diǎn)B的坐標(biāo)為(3,0),
∴BC==3,
BD=,
CD==2.
∵BC2+BD2=20=CD2,
∴∠CBD=90°,
∴△BCD為直角三角形.
(3)存在.
由(1)知該拋物線的對稱軸為x=2,
點(diǎn)A關(guān)于對稱軸x=2的對稱點(diǎn)為點(diǎn)B,連接BC,則直線BC與對稱軸x=2的交點(diǎn)即為點(diǎn)P.
令直線BC的解析式為y=kx+b,代入點(diǎn)C(0,3)和點(diǎn)B(3,0),
得,
解得.
所以直線BC的解析式為y=-x+3.
當(dāng)x=2時(shí),y=-2+3=1,
所以點(diǎn)P(2,1).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、D、B、E四點(diǎn)在同一條直線上,AD=BE,BC∥EF,BC=EF.
(1)求證:AC=DF;
(2)若CD為∠ACB的平分線,∠A=25°,∠E=71°,求∠CDF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場計(jì)劃購進(jìn)甲、乙兩種商品,已知購進(jìn)甲商品2件和乙商品1件共需50元,購進(jìn)甲商品1件和乙商品2件共需70元.
(1)求甲、乙兩種商品每件的進(jìn)價(jià)分別是多少元?
(2)商場決定甲商品以每件20元出售,乙商品以每件50元出售,為滿足市場需求,需購進(jìn)甲、乙兩種商品共60件,若要保證獲利不低于1000元,則甲商品最多能購進(jìn)多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線過點(diǎn)(3,1),D為拋物線的頂點(diǎn).直線l:經(jīng)過定點(diǎn)A.
(1)直接寫出拋物線的解析式和點(diǎn)A的坐標(biāo);
(2)如圖,直線l與拋物線交于P,Q兩點(diǎn).
①求證:∠PDQ=90°;
②求△PDQ面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,對稱軸為直線x=1的拋物線y=-x2+bx+c與x軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,且點(diǎn)B的坐標(biāo)為(-1,0)
(1)求拋物線的解析式;
(2)點(diǎn)D的坐標(biāo)為(0,1),點(diǎn)P是拋物線上的動(dòng)點(diǎn),若△PCD是以CD為底的等腰三角形,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方形網(wǎng)格上有6個(gè)三角形:①△ABC;②△BCD;③△BDE;④△BFG;⑤△FGH;⑥△EFK.其中②~⑥中與①相似的是( )
A. ②③④ B. ③④⑤ C. ④⑤⑥ D. ②③⑥
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,窗簾的褶皺是指按照窗戶的實(shí)際寬度將窗簾布料以一定比例加寬的做法,褶皺之后的窗簾更能彰顯其飄逸、靈動(dòng)的效果.其中,窗寬度的1.5倍為平褶皺,窗寬度的2倍為波浪褶皺.如圖②,小莉房間的窗戶呈長方形,窗戶的寬度(AD)比高度(AB)的少0.5m,某種窗簾的價(jià)格為120元/m2.如果以波浪褶皺的方式制作該種窗簾比以平褶皺的方式費(fèi)用多180元,求小莉房間窗戶的寬度與高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將等腰Rt△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)15°得到△AB′C′,若AC=1,則圖中陰影部分面積為( 。
A.B.3C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店欲購進(jìn) A、B 兩種商品,若購進(jìn) A 種商品 5 件和 B 種商品 4 件需 300 元;購進(jìn) A 種商品 6 件和 B 種商 品 8 件需 440 元.
(1)求 A、B 兩種商品每件的進(jìn)價(jià)分別為多少元?
(2)若該商店每銷售 1 件 A 種商品可獲利 8 元,每銷售 1 件 B 種商品可獲利 6 元,該商店準(zhǔn)備購進(jìn) A、B 兩種商 品共 50 件,且這兩種商品全部售出后總獲利超過 344 元,則至少購進(jìn)多少件 A 商品?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com