【題目】已知如圖,D是△ABC的邊AB上一點(diǎn),DE∥BC,交邊AC于點(diǎn)E,延長(zhǎng)DE至點(diǎn)F,使EF=DE,連接BF,交邊AC于點(diǎn)G,連接CF.
(1)求證:;
(2)如果CF2=FG·FB,求證:CG·CE=BC·DE.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析.
【解析】分析: (1)首先證明△ADE∽△ABC,△EFG∽△CBG,根據(jù)相似三角形的對(duì)應(yīng)邊的比相等,以及DE=EF即可證得;
(2)首先證明△CFG∽△BFC,證得=,∠FCE=∠CBF,然后根據(jù)平行線的性質(zhì)證明∠FEG=∠CEF,即可證得△EFG∽△ECF,則=,即可證得=,則所證結(jié)論即可得到.
詳解:
(1)∵DE∥BC,
∴△ADE∽△ABC,△EFG∽△CBG,
∴=,=.
又∵DE=EF,
∴=,
∴=;
(2)∵CF2=FG·FB,
∴=.
又∠BFC=∠CFG,
∴△BCF∽△CGF,
∴=,∠FCE=∠CBF.
又∵DF∥BC,
∴∠EFG=∠CBF,
∴∠FCE=∠EFG.
∵∠FEG=∠CEF,
∴△EFG∽△ECF,
∴=.
又∵EF=DE,=,
∴=,即CG·CE=BC·DE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,點(diǎn)M、N分別在AD、BC邊上,將矩形ABCD沿MN翻折,點(diǎn)C恰好落在AD邊上的點(diǎn)F處,若MD=1,∠MNC=60°,則AB的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】尺規(guī)作圖特有的魅力曾使無(wú)數(shù)人沉湎其中.傳說(shuō)拿破侖通過(guò)下列尺規(guī)作圖考他的大臣:
①將半徑為r的⊙O六等分,依次得到A,B,C,D,E,F(xiàn)六個(gè)分點(diǎn);
②分別以點(diǎn)A,D為圓心,AC長(zhǎng)為半徑畫(huà)弧,G是兩弧的一個(gè)交點(diǎn);
③連結(jié)OG.
問(wèn):OG的長(zhǎng)是多少?
大臣給出的正確答案應(yīng)是( 。
A. r B. (1+)r C. (1+)r D. r
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題情境:
在綜合與實(shí)踐課上,老師讓同學(xué)們以“矩形紙片的剪拼”為主題開(kāi)展數(shù)學(xué)活動(dòng).如圖1,將矩形紙片沿對(duì)角線剪開(kāi),得到和.并且量得,.
操作發(fā)現(xiàn):
(1)將圖1中的以點(diǎn)為旋轉(zhuǎn)中心,按逆時(shí)針?lè)较蛐D(zhuǎn),使,得到如圖2所示的,過(guò)點(diǎn)作的平行線,與的延長(zhǎng)線交于點(diǎn),則四邊形的形狀是________.
(2)創(chuàng)新小組將圖1中的以點(diǎn)為旋轉(zhuǎn)中心,按逆時(shí)針?lè)较蛐D(zhuǎn),使、、三點(diǎn)在同一條直線上,得到如圖3所示的,連接,取的中點(diǎn),連接并延長(zhǎng)至點(diǎn),使,連接、,得到四邊形,發(fā)現(xiàn)它是正方形,請(qǐng)你證明這個(gè)結(jié)論.
實(shí)踐探究:
(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進(jìn)行如下操作:將沿著方向平移,使點(diǎn)與點(diǎn)重合,此時(shí)點(diǎn)平移至點(diǎn),與相交于點(diǎn),如圖4所示,連接,試求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(3分)如圖,AD是△ABC的角平分線,DE⊥AC,垂足為E,BF∥AC交ED的延長(zhǎng)線于點(diǎn)F,若BC恰好平分∠ABF,AE=2BF.給出下列四個(gè)結(jié)論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結(jié)論共有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠D=∠C=90°,點(diǎn)E在DC上,且AE,BE分別平分∠BAD和∠ABC.
(1)求證:點(diǎn)E為CD中點(diǎn);
(2)當(dāng)AD=2,BC=3時(shí),求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,M、N、C三點(diǎn)的坐標(biāo)分別為(,1),(3,1),(3,0),點(diǎn)A為線段MN上的一個(gè)動(dòng)點(diǎn),連接AC,過(guò)點(diǎn)A作交y軸于點(diǎn)B,當(dāng)點(diǎn)A從M運(yùn)動(dòng)到N時(shí),點(diǎn)B隨之運(yùn)動(dòng),設(shè)點(diǎn)B的坐標(biāo)為(0,b),則b的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我縣木瓜村盛產(chǎn)優(yōu)種紅富士蘋(píng)果,曾推選參加省農(nóng)產(chǎn)品博覽會(huì),某人去該地水果批發(fā)市場(chǎng)采購(gòu)蘋(píng)果,他看中了A、B兩家蘋(píng)果.這兩家蘋(píng)果品質(zhì)都一樣,市場(chǎng)售價(jià)都為6元/千克,但批發(fā)進(jìn)價(jià)不相同.兩家蘋(píng)果批發(fā)進(jìn)價(jià)如下:
A家規(guī)定:批發(fā)數(shù)量不超過(guò)1000千克,可按市場(chǎng)售價(jià)的92%優(yōu)惠;批發(fā)數(shù)量多于1000千克但不超過(guò)2000千克,可全部按市場(chǎng)售價(jià)的90%優(yōu)惠;批發(fā)數(shù)超過(guò)2000千克則全部按市場(chǎng)售價(jià)的88%優(yōu)惠.
B家的規(guī)定如下表:
數(shù)量范圍(千克) | 0~500 | 500以上~1500 | 1500以上~2500 | 2500以上部分 |
批發(fā)進(jìn)價(jià)(元) | 市場(chǎng)售價(jià)的95% | 市場(chǎng)售價(jià)的85% | 市場(chǎng)售價(jià)的75% | 市場(chǎng)售價(jià)的70% |
[表格說(shuō)明: 家蘋(píng)果批發(fā)進(jìn)價(jià)按分段計(jì)算,如:某人要批發(fā)蘋(píng)果2100千克,則批發(fā)進(jìn)價(jià)]
根據(jù)上述信息,請(qǐng)解答下列問(wèn)題:
(1)如果此人要批發(fā)1000千克蘋(píng)果,則他在家批發(fā)需要_______元,在家批發(fā)需要_______元;
(2)如果此人批發(fā)千克蘋(píng)果(1500<x<2000),則他在家批發(fā)需要_______元,在家批發(fā)需要_______元(用含的代數(shù)式表示);
(3)現(xiàn)在此人要批發(fā)3000千克蘋(píng)果,你能幫助他選擇在哪家批發(fā)更優(yōu)惠嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小王剪了兩張直角三角形紙片,進(jìn)行了如下的操作:
操作一:如圖1,將Rt△ABC沿某條直線折疊,使斜邊的兩個(gè)端點(diǎn)A與B重合,折痕為DE.
(1)如果AC=6cm,BC=8cm,可求得△ACD的周長(zhǎng)為 ;
(2)如果∠CAD:∠BAD=4:7,可求得∠B的度數(shù)為 ;
操作二:如圖2,小王拿出另一張Rt△ABC紙片,將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,若AC=9cm,BC=12cm,請(qǐng)求出CD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com