【題目】在Rt△ABC中,∠ACB=90°,AC=12.點(diǎn)D在直線CB上,以CA,CD為邊作矩形ACDE,直線AB與直線CE,DE的交點(diǎn)分別為F,G.
(1)如圖,點(diǎn)D在線段CB上,四邊形ACDE是正方形.
①若點(diǎn)G為DE中點(diǎn),求FG的長(zhǎng).
②若DG=GF,求BC的長(zhǎng).
(2)已知BC=9,是否存在點(diǎn)D,使得△DFG是等腰三角形?若存在,求該三角形的腰長(zhǎng);若不存在,試說(shuō)明理由.
【答案】(1)①FG =2;②BC=12;(2)等腰三角形△DFG的腰長(zhǎng)為4或20或或.
【解析】(1)①只要證明△ACF∽△GEF,推出,即可解決問(wèn)題;②如圖1中,想辦法證明∠1=∠2=30°即可解決問(wèn)題;
(2)分四種情形:①如圖2中,當(dāng)點(diǎn)D中線段BC上時(shí),此時(shí)只有GF=GD,②如圖3中,當(dāng)點(diǎn)D中線段BC的延長(zhǎng)線上,且直線AB,CE的交點(diǎn)中AE上方時(shí),此時(shí)只有GF=DG,
③如圖4中,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上,且直線AB,EC的交點(diǎn)中BD下方時(shí),此時(shí)只有DF=DG,如圖5中,當(dāng)點(diǎn)D中線段CB的延長(zhǎng)線上時(shí),此時(shí)只有DF=DG,分別求解即可解決問(wèn)題;
(1)①在正方形ACDE中,DG=GE=6,
中Rt△AEG中,AG=,
∵EG∥AC,
∴△ACF∽△GEF,
∴,
∴,
∴FG=AG=2.
②如圖1中,正方形ACDE中,AE=ED,∠AEF=∠DEF=45°,
∵EF=EF,
∴△AEF≌△DEF,
∴∠1=∠2,設(shè)∠1=∠2=x,
∵AE∥BC,
∴∠B=∠1=x,
∵GF=GD,
∴∠3=∠2=x,
在△DBF中,∠3+∠FDB+∠B=180°,
∴x+(x+90°)+x=180°,
解得x=30°,
∴∠B=30°,
∴在Rt△ABC中,BC=.
(2)在Rt△ABC中,AB==15,
如圖2中,當(dāng)點(diǎn)D中線段BC上時(shí),此時(shí)只有GF=GD,
∵DG∥AC,
∴△BDG∽△BCA,
設(shè)BD=3x,則DG=4x,BG=5x,
∴GF=GD=4x,則AF=15-9x,
∵AE∥CB,
∴△AEF∽△BCF,
∴,
∴,
整理得:x2-6x+5=0,
解得x=1或5(舍棄)
∴腰長(zhǎng)GD為=4x=4.
如圖3中,當(dāng)點(diǎn)D中線段BC的延長(zhǎng)線上,且直線AB,CE的交點(diǎn)中AE上方時(shí),此時(shí)只有GF=DG,
設(shè)AE=3x,則EG=4x,AG=5x,
∴FG=DG=12+4x,
∵AE∥BC,
∴△AEF∽△BCF,
∴,
∴,
解得x=2或-2(舍棄),
∴腰長(zhǎng)DG=4x+12=20.
如圖4中,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上,且直線AB,EC的交點(diǎn)中BD下方時(shí),此時(shí)只有DF=DG,過(guò)點(diǎn)D作DH⊥FG.
設(shè)AE=3x,則EG=4x,AG=5x,DG=4x+12,
∴FH=GH=DGcos∠DGB=(4x+12)×=,
∴GF=2GH=,
∴AF=GF-AG=,
∵AC∥DG,
∴△ACF∽△GEF,
∴
∴,
解得x=或-(舍棄),
∴腰長(zhǎng)GD=4x+12=,
如圖5中,當(dāng)點(diǎn)D中線段CB的延長(zhǎng)線上時(shí),此時(shí)只有DF=DG,作DH⊥AG于H.
設(shè)AE=3x,則EG=4x,AG=5x,DG=4x-12,
∴FH=GH=DGcos∠DGB=,
∴FG=2FH=,
∴AF=AG-FG=,
∵AC∥EG,
∴△ACF∽△GEF,
∴,
∴,解得x=或-(舍棄),
∴腰長(zhǎng)DG=4x-12=,
綜上所述,等腰三角形△DFG的腰長(zhǎng)為4或20或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年五、六月份,我省各地、市普遭暴雨襲擊,水位猛漲.某市抗洪搶險(xiǎn)救援隊(duì)伍在處接到報(bào)告:有受災(zāi)群眾被困于一座遭水淹的樓頂處,情況危急!救援隊(duì)伍在處測(cè)得在的北偏東的方向上(如圖所示),隊(duì)伍決定分成兩組:第一組馬上下水游向處救人,同時(shí)第二組從陸地往正東方向奔跑米到達(dá)處,再?gòu)?/span>處下水游向處救人,已知在的北偏東的方向上,且救援人員在水中游進(jìn)的速度均為米/秒.在陸地上奔跑的速度為米/秒,試問(wèn)哪組救援隊(duì)先到處?請(qǐng)說(shuō)明理由.(參考數(shù)據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】李大爺要圍成一個(gè)矩形菜園,菜園的一邊利用足夠長(zhǎng)的墻,用籬笆圍成的另外三邊總長(zhǎng)應(yīng)恰好為24米.要圍成的菜園是如圖所示的矩形ABCD.設(shè)BC邊的長(zhǎng)為x米,AB邊的長(zhǎng)為y米,則y與x之間的函數(shù)關(guān)系式是( )
A. y=-2x+24(0<x<12) B. y=-x+12(0<x<24)
C. y=2x-24(0<x<12) D. y=x-12(0<x<24)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn).
(1)求證:△ACE≌△BCD;
(2)求證:2CD2=AD2+DB2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,其頂點(diǎn)坐標(biāo)為A(﹣1,﹣3),與x軸的一個(gè)交點(diǎn)為B(﹣3,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論:①abc>0;②不等式ax2+(b﹣m)x+c﹣n<0的解集為﹣3<x<﹣1;③拋物線與x軸的另一個(gè)交點(diǎn)是(3,0);④方程ax2+bx+c+3=0有兩個(gè)相等的實(shí)數(shù)根;其中正確的是( 。
A. ①③ B. ②③ C. ③④ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣2x2+4x與x軸的另一個(gè)交點(diǎn)為A,現(xiàn)將拋物線向右平移m(m>2)個(gè)單位長(zhǎng)度,所得拋物線與x軸交于C,D,與原拋物線交于點(diǎn)P,設(shè)△PCD的面積為S,則用m表示S正確的是( 。
A. (m2﹣4) B. m2﹣2 C. (4﹣m2) D. 2﹣m2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+bx+c與y軸的交于點(diǎn)A(0,3),與x軸的交于點(diǎn)B和C,點(diǎn)B的橫坐標(biāo)為2.點(diǎn)A關(guān)于拋物線對(duì)稱軸對(duì)稱的點(diǎn)為點(diǎn)D,在x軸上有一動(dòng)點(diǎn)E(t,0),過(guò)點(diǎn)E作平行于y軸的直線與拋物線、直線AD的交點(diǎn)分別為P、Q.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)P在線段AC的下方時(shí),求△APC面積的最大值;
(3)當(dāng)t>2時(shí),是否存在點(diǎn)P,使以A、P、Q為頂點(diǎn)的三角形與△AOB相似.若存在,求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AB=8,點(diǎn)C和點(diǎn)D是⊙O上關(guān)于直線AB對(duì)稱的兩個(gè)點(diǎn),連接OC、AC,且∠BOC<90°,直線BC和直線AD相交于點(diǎn)E,過(guò)點(diǎn)C作直線CG與線段AB的延長(zhǎng)線相交于點(diǎn)F,與直線AD相交于點(diǎn)G,且∠GAF=∠GCE
(1)求證:直線CG為⊙O的切線;
(2)若點(diǎn)H為線段OB上一點(diǎn),連接CH,滿足CB=CH,
①△CBH∽△OBC
②求OH+HC的最大值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ΔABC中,AB=AC,若將ΔABC繞點(diǎn)C順時(shí)針180得到ΔFEC。
(1)試猜想AE與BF有何關(guān)系,并說(shuō)明理由;
(2)若ΔABC的面積為3cm2,求四邊形ABFE的面積;
(3)當(dāng)∠ACB為多少度時(shí),四邊形ABFE為矩形?說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com