【題目】如圖,已知線段 AB a .延長(zhǎng)線段 BA 到點(diǎn) C,使 AC=2AB,延長(zhǎng)線段 AB 到點(diǎn) E,使 BE= BC.
(1)用刻度尺按要求補(bǔ)全圖形;
(2)圖中有幾條線段?求出所有線段的長(zhǎng)度和(用含 a 的代數(shù)式表示);
(3)點(diǎn) D 是 CE 的中點(diǎn),若 AD=0.5cm,求 a 的值.
【答案】(1)畫圖如圖所示;(2)6, , (3)4cm.
【解析】
(1)根據(jù)題意畫出正確圖形;
(2)根據(jù)圖形可得,共有6條線段,由已知條件可得AB a,AC=2AB=2a, 則BC=3a,BE= BC=,再結(jié)合圖形求出CE、AE即可計(jì)算出所有線段的長(zhǎng)度和;
(3)由(2)得CE=a,因?yàn)辄c(diǎn) D 是 CE 的中點(diǎn),故CD=,再結(jié)合圖形得出AD=AC-CD,列出關(guān)于a的方程求解即可.
(1)畫圖如圖所示
(2)圖中共有6條線段
∵AB=a,AC=2AB
∴AC=2a
∴BC=AC+AB=3a
∵BE=BC
∴BE=a
∴CE=AC+AB+BE=a
AE=AB+BE=a
∴AC+BC+CE+AB+AE+BE=2a+3a+a+;
(3)∵點(diǎn)是的中點(diǎn),CE=
∴CD=
∴AD=AC-CD=2a-
∵AD=0.5cm
∴
∴a=4(cm).
故答案為:(1)畫圖如圖所示;(2)6, , (3)4cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果對(duì)于某一特定范圍內(nèi)的x的任意允許值,P=|10﹣2x|+|10﹣3x|+|10﹣4x|+|10﹣5x|+…+|10﹣10x|為定值,則此定值是( 。
A. 20 B. 30 C. 40 D. 50
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知是等腰直角三角形,,點(diǎn)D是BC的中點(diǎn)作正方形DEFG,使點(diǎn)A、C分別在DG和DE上,連接AE,BG.
試猜想線段BG和AE的數(shù)量關(guān)系是______;
將正方形DEFG繞點(diǎn)D逆時(shí)針方向旋轉(zhuǎn),
判斷中的結(jié)論是否仍然成立?請(qǐng)利用圖2證明你的結(jié)論;
若,當(dāng)AE取最大值時(shí),求AF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(13分)(1)如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分別是BC、CD上的點(diǎn),且∠EAF=60°,延長(zhǎng)FD到點(diǎn)G,使DG=BE,連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得線段BE、EF、FD之間的數(shù)量關(guān)系為 .
(2)如圖2,在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是BC、CD上的點(diǎn),且∠EAF=∠BAD,線段BE、EF、FD之間存在什么數(shù)量關(guān)系,為什么?
(3)如圖3,點(diǎn)A在點(diǎn)O的北偏西30°處,點(diǎn)B在點(diǎn)O的南偏東70°處,且AO=BO,點(diǎn)A沿正東方向移動(dòng)249米到達(dá)E處,點(diǎn)B沿北偏東50°方向移動(dòng)334米到達(dá)點(diǎn)F處,從點(diǎn)O觀測(cè)到E、F之間的夾角為70°,根據(jù)(2)的結(jié)論求E、F之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點(diǎn)D,則D為BC的中點(diǎn),∠BAD= ∠BAC=60°,于是 = = ; 遷移應(yīng)用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠ADE=120°,D,E,C三點(diǎn)在同一條直線上,連接BD.
(1)①求證:△ADB≌△AEC;②請(qǐng)直接寫出線段AD,BD,CD之間的等量關(guān)系式;
(2)拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點(diǎn)C關(guān)于BM的對(duì)稱點(diǎn)E,連接AE并延長(zhǎng)交BM于點(diǎn)F,連接CE,CF.
①證明△CEF是等邊三角形;
②若AE=5,CE=2,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的角平分線,DE⊥AC,垂足為E,BF∥AC交ED的延長(zhǎng)線于點(diǎn)F,若BC恰好平分∠ABF,AE=2BF.給出下列四個(gè)結(jié)論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結(jié)論共有( 。
A. ①②③④ B. ①②④ C. ①②③ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D是直線AB上的一動(dòng)點(diǎn)(不和A、B重合),BE⊥CD于E,交直線AC于F.
(1)點(diǎn)D在邊AB上時(shí),試探究線段BD、AB和AF的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)點(diǎn)D在AB的延長(zhǎng)線或反向延長(zhǎng)線上時(shí),(1)中的結(jié)論是否成立?若不成立,請(qǐng)直接寫出正確結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,△ABC 是等腰直角三角形,BC=AB,A 點(diǎn)在 x 負(fù)半軸上,直角頂點(diǎn) B 在 y 軸上,點(diǎn) C 在 x 軸上方.
(1)如圖1所示,若A的坐標(biāo)是(﹣3,0),點(diǎn) B的坐標(biāo)是(0,1),求點(diǎn) C 的坐標(biāo);
(2)如圖2,過(guò)點(diǎn) C 作 CD⊥y 軸于 D,請(qǐng)直接寫出線段OA,OD,CD之間等量關(guān)系;
(3)如圖3,若 x 軸恰好平分∠BAC,BC與 x 軸交于點(diǎn) E,過(guò)點(diǎn) C作 CF⊥x 軸于 F,問 CF 與 AE 有怎樣的數(shù)量關(guān)系?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校要從甲、乙兩名同學(xué)中挑選一人參加創(chuàng)新能力大賽,在最近的五次選拔測(cè)試中, 他倆的成績(jī)分別如下表,請(qǐng)根據(jù)表中數(shù)據(jù)解答下列問題:
第 1 次 | 第 2 次 | 第 3 次 | 第 4 次 | 第 5 次 | 平均分 | 眾數(shù) | 中位數(shù) | 方差 | |
甲 | 60 分 | 75 分 | 100 分 | 90 分 | 75 分 | 80 分 | 75 分 | 75 分 | 190 |
乙 | 70 分 | 90 分 | 100 分 | 80 分 | 80 分 | 80 分 | 80 分 |
(1)把表格補(bǔ)充完整:
(2)在這五次測(cè)試中,成績(jī)比較穩(wěn)定的同學(xué)是多少;若將 80 分以上(含 80 分) 的成績(jī)視為優(yōu)秀,則甲、乙兩名同學(xué)在這五次測(cè)試中的優(yōu)秀率分別是多少;
(3)歷屆比賽表明,成績(jī)達(dá)到80分以上(含 80分)就很可能獲獎(jiǎng),成績(jī)達(dá)到 90分以上(含90分)就很可能獲得一等獎(jiǎng),那么你認(rèn)為選誰(shuí)參加比賽比較合適?說(shuō)明你的理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com