【題目】已知,,,都是整數(shù),且,則__________.
【答案】1或0.
【解析】
根據(jù)題意易知|a+b|、|b+c|、|c+d|、|d+a|是整數(shù),所以不外乎兩種可能:①3個(gè)為0,1個(gè)為2;②2個(gè)為0,2個(gè)為1,繼而討論|a+d|的值.
由題意得:|a+b|、|b+c|、|c+d|、|d+a|是整數(shù),所以有兩種可能:
①3個(gè)為0,1個(gè)為2,
②2個(gè)為0,2個(gè)為1,
所以|a+d|只可能取0、1、2,若為2,
則|a+b|=|b+c|=|c+d|=0,
不難得出a=-d,所以|a+d|=0,與假設(shè)|a+d|=2矛盾.
所以|a+d|只可能取0、1,a=0,b=0,c=-1,d=1時(shí)|a+d|=1;
a=-1,b=0,c=0,d=1時(shí)|a+d|=0.
故答案為:1或0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過(guò)原點(diǎn)和點(diǎn)A(6,0),與其對(duì)稱(chēng)軸交于點(diǎn)B,P是拋物線y=﹣x2+bx+c上一動(dòng)點(diǎn),且在x軸上方.過(guò)點(diǎn)P作x軸的垂線交動(dòng)拋物線y=﹣(x﹣h)2(h為常數(shù))于點(diǎn)Q,過(guò)點(diǎn)Q作PQ的垂線交動(dòng)拋物線y=﹣(x﹣h)2于點(diǎn)Q′(不與點(diǎn)Q重合),連結(jié)PQ′,設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求拋物線y=﹣x2+bx+c的函數(shù)關(guān)系式及點(diǎn)B的坐標(biāo);
(2)當(dāng)h=0時(shí).
①求證: ;
②設(shè)△PQQ′與△OAB重疊部分圖形的周長(zhǎng)為l,求l與m之間的函數(shù)關(guān)系式;
(3)當(dāng)h≠0時(shí),是否存在點(diǎn)P,使四邊形OAQQ′為菱形?若存在,請(qǐng)直接寫(xiě)出h的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)一批甲、乙兩種玩具,已知一件甲種玩具的進(jìn)價(jià)與一件乙種玩具的進(jìn)價(jià)的和為40元,用90元購(gòu)進(jìn)甲種玩具的件數(shù)與用150元購(gòu)進(jìn)乙種玩具的件數(shù)相同.
(1)求每件甲種、乙種玩具的進(jìn)價(jià)分別是多少元?
(2)商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場(chǎng)決定此次進(jìn)貨的總資金不超過(guò)1000元,求商場(chǎng)共有幾種進(jìn)貨方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知OM⊥ON,垂足為O,點(diǎn)A、B分別是射線OM、ON上的一點(diǎn)(O點(diǎn)除外).
(1)如圖①,射線AC平分∠OAB,是否存在點(diǎn)C,使得BC所在的直線也平分以B為頂點(diǎn)的某一個(gè)角α(0°<α<180°),若存在,則∠ACB= ;
(2)如圖②,P為平面上一點(diǎn)(O點(diǎn)除外),∠APB=90°,且OA≠AP,分別畫(huà)∠OAP、∠OBP的平分線AD、BE,交BP、OA于點(diǎn)D、E,試簡(jiǎn)要說(shuō)明AD∥BE的理由;
(3)在(2)的條件下,隨著P點(diǎn)在平面內(nèi)運(yùn)動(dòng),AD、BE的位置關(guān)系是否發(fā)生變化?請(qǐng)利用圖③畫(huà)圖探究,如果不變,直接回答;如果變化,畫(huà)出圖形并直接寫(xiě)出AD、BE位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列說(shuō)法:()單項(xiàng)式的系數(shù)、次數(shù)都是;()多項(xiàng)式的系數(shù)是,它是三次二項(xiàng)式;()單項(xiàng)式與都是七次單項(xiàng)式;(4)單項(xiàng)式和的系數(shù)分別是或;()是二次單項(xiàng)式;()與都是整式,其中正確的說(shuō)法有( ).
A.個(gè)B. C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:
我們定義:若一個(gè)四邊形的一條對(duì)角線把四邊形分成兩個(gè)等腰三角形,則這條對(duì)角線叫這個(gè)四邊形的和諧線,這個(gè)四邊形叫做和諧四邊形.如正方形就是和諧四邊形.結(jié)合閱讀材料,完成下列問(wèn)題:
(1)下列哪個(gè)四邊形一定是和諧四邊形 .
A.平行四邊形 B.矩形 C.菱形 D.等腰梯形
(2)命題:“和諧四邊形一定是軸對(duì)稱(chēng)圖形”是 命題(填“真”或“假”).
(3)如圖,等腰Rt△ABD中,∠BAD=90°.若點(diǎn)C為平面上一點(diǎn),AC為凸四邊形ABCD的和諧線,且AB=BC,請(qǐng)求出∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在銳角△ABC中,AB=5,tanC=3,BD⊥AC于點(diǎn)D,BD=3,點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿AB向終點(diǎn)B運(yùn)動(dòng),過(guò)點(diǎn)P作PE∥AC交邊BC于點(diǎn)E,以PE為邊作Rt△PEF,使∠EPF=90°,點(diǎn)F在點(diǎn)P的下方,且EF∥AB.設(shè)△PEF與△ABD重疊部分圖形的面積為S(平方單位)(S>0),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒)(t>0).
(1)求線段AC的長(zhǎng).
(2)當(dāng)△PEF與△ABD重疊部分圖形為四邊形時(shí),求S與t之間的函數(shù)關(guān)系式.
(3)若邊EF與邊AC交于點(diǎn)Q,連結(jié)PQ,如圖②.
①當(dāng)PQ將△PEF的面積分成1:2兩部分時(shí),求AP的長(zhǎng).
②直接寫(xiě)出PQ的垂直平分線經(jīng)過(guò)△ABC的頂點(diǎn)時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)長(zhǎng)為4cm,寬為3cm的長(zhǎng)方形木板在桌面上做無(wú)滑動(dòng)的翻滾(順時(shí)針?lè)较颍,木板點(diǎn)A位置的變化為A→Al→A2,其中第二次翻滾被面上一小木塊擋住,使木板與桌面成30°的角,則點(diǎn)A滾到A2位置時(shí)共走過(guò)的路徑長(zhǎng)為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)把下列的證明過(guò)程補(bǔ)充完整:
已知,如圖,BCE、AFE是直線,AB∥CD,∠1=∠2,∠3=∠4,求證:AD∥BE.
證明:∵AB∥CD(已知)
∴∠4=∠______
∵∠3=∠4(已知)
∴∠3=∠______(等量代換)
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF(等式的性質(zhì))
即∠BAF=∠______
∴∠3=∠______(等量代換)
∴AD∥BE______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com