【題目】如圖,將⊙O上的沿弦BC翻折交半徑OA于點(diǎn)D,再將沿BD翻折交BC于點(diǎn)E,連結(jié)DE.若AB10OD1,則線段DE的長(zhǎng)為(  )

A.5B.2C.2D.+1

【答案】B

【解析】

連接CA、CDOC,作CFOAF,則AD4,先利用折疊的性質(zhì)和圓周角定理得到 ,再利用弧、弦、圓心角的關(guān)系得到ACCDDE,則AFDF2,然后利用勾股定理計(jì)算出CF,接著再計(jì)算出CD即可.

解:連接CA、CD、OC,作CFOAF,如圖,

∵⊙O上的沿弦BC翻折交半徑OA于點(diǎn)D,再將沿BD翻折交BC于點(diǎn)E,

為等圓中的弧,

∵它們所對(duì)的圓周角為∠ABC

,

ACCDDE

AFDF2,

RtOCF中,CF4,

RtCDF中,CD ,

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代第一部自成體系的數(shù)學(xué)專著,書(shū)中記載:今有圓材,埋在壁中,不知大小,以鋸鋸之,深兩寸,鋸道長(zhǎng)八寸,問(wèn)徑幾何?譯為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這木材,鋸口深2寸(ED2寸),鋸道長(zhǎng)8,問(wèn)這塊圓形木材的直徑是多少?如圖所示,請(qǐng)根據(jù)所學(xué)知識(shí)計(jì)算圓形木材的直徑AC是( 。

A.5B.8C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:一次函數(shù)的圖象與反比例函數(shù)的圖象交于M、N兩點(diǎn)

(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;

(2)根據(jù)圖象寫(xiě)出使反比例函數(shù)的值大于一次函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為矩形紙片,把紙片ABCD折疊,使點(diǎn)B恰好落在CD邊的中點(diǎn)E, 折痕為AF,若CD=6,則AF等于__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸于點(diǎn),交軸正半軸于點(diǎn),與過(guò)點(diǎn)的直線相交于另一點(diǎn),過(guò)點(diǎn)軸,垂足為

1)求拋物線的表達(dá)式;

2)點(diǎn)在線段上(不與點(diǎn),重合),過(guò)軸,交直線,交拋物線于點(diǎn)于點(diǎn),求的最大值;

3)若軸正半軸上的一動(dòng)點(diǎn),設(shè)的長(zhǎng)為.是否存在,使以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O上依次有AB、C三點(diǎn),BO的延長(zhǎng)線交⊙OE,,過(guò)點(diǎn)CCDABBE的延長(zhǎng)線于D,AD交⊙O于點(diǎn)F

1)求證:四邊形ABCD是菱形;

2)連接OA、OF,若∠AOF3FOEAF3,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,甲、乙兩車同時(shí)從A地出發(fā),分別勻速前往B地與C地,甲車到達(dá)B地休息一段時(shí)間后原速返回,乙車到達(dá)C地后立即返回.兩車恰好同時(shí)返回A地.圖②是兩車各自行駛的路程y(千米)與出發(fā)時(shí)間x(時(shí))之間的函數(shù)圖象.根據(jù)圖象解答下列問(wèn)題:

1)甲車到達(dá)B地休息了   時(shí);

2)求甲車返回A地途中yx之間的函數(shù)關(guān)系式;

3)當(dāng)x為何值時(shí),兩車與A地的路程恰好相同.(不考慮兩車同在A地的情況)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正五邊形內(nèi)接于圓,連接分別與交于點(diǎn),連接,下列結(jié)論:①③四邊形是菱形④;其中正確的個(gè)數(shù)為(

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)yx+4的圖象與x軸交于點(diǎn)B,與y軸交于點(diǎn)C,二次函數(shù)yx2+bx+c的圖象經(jīng)過(guò)點(diǎn)A20)和點(diǎn)C,拋物線與x軸交于點(diǎn)A和點(diǎn)E(點(diǎn)A在點(diǎn)E的左側(cè)),連接AC,將△ABC沿AC折疊,得到點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)D

1)求二次函數(shù)的表達(dá)式;

2)求點(diǎn)D坐標(biāo),并判定點(diǎn)D是否在該二次函數(shù)的圖象上;

3)①在線段AC上找一點(diǎn)F,使得△OBF的周長(zhǎng)最小,直接寫(xiě)出此時(shí)點(diǎn)F的坐標(biāo).②在①的基礎(chǔ)上,過(guò)點(diǎn)F的一條直線與拋物線對(duì)稱軸右側(cè)部分交于點(diǎn)N,交線段AD于點(diǎn)M,連接NA、ND,使△AMF與△AMN的面積比為41,請(qǐng)直接寫(xiě)出△AND的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案